论文标题

朝着最小变化的可转移不受限制的对抗例子

Towards Transferable Unrestricted Adversarial Examples with Minimum Changes

论文作者

Liu, Fangcheng, Zhang, Chao, Zhang, Hongyang

论文摘要

基于转移的对手示例是最重要的黑盒攻击类别之一。但是,对抗性扰动的可转移性和不可识别性之间存在权衡。在这个方向上的先前工作通常需要固定但大的$ \ ell_p $ -Norm扰动预算才能达到良好的转移成功率,从而导致可感知的对抗性扰动。另一方面,旨在产生语义保护扰动的大多数当前不受限制的对抗攻击都遭受对目标模型的可传递性较弱。在这项工作中,我们提出了一个几何感知框架,以生成具有最小变化的可转移对抗示例。类似于统计机器学习中的模型选择,我们利用验证模型在$ \ ell _ {\ infty} $ - 规范和无限制的威胁模型下为每个图像选择最佳的扰动预算。我们通过鼓励组内多样性,同时惩罚跨组的相似性,提出一种针对培训和验证模型分配的原则方法。广泛的实验验证了我们框架在平衡不可识别和可转移性的术语的有效性。该方法是我们进入CVPR'21 Security AI Challenger的基础:对Imagenet的不受限制的对抗性攻击,在该攻击中,我们在1,559支球队中排名第一,并以最终的分数和平均图像质量水平等方面超过了4.59%和23.91%的亚军提交。代码可在https://github.com/equationliu/ga-Attack上找到。

Transfer-based adversarial example is one of the most important classes of black-box attacks. However, there is a trade-off between transferability and imperceptibility of the adversarial perturbation. Prior work in this direction often requires a fixed but large $\ell_p$-norm perturbation budget to reach a good transfer success rate, leading to perceptible adversarial perturbations. On the other hand, most of the current unrestricted adversarial attacks that aim to generate semantic-preserving perturbations suffer from weaker transferability to the target model. In this work, we propose a geometry-aware framework to generate transferable adversarial examples with minimum changes. Analogous to model selection in statistical machine learning, we leverage a validation model to select the best perturbation budget for each image under both the $\ell_{\infty}$-norm and unrestricted threat models. We propose a principled method for the partition of training and validation models by encouraging intra-group diversity while penalizing extra-group similarity. Extensive experiments verify the effectiveness of our framework on balancing imperceptibility and transferability of the crafted adversarial examples. The methodology is the foundation of our entry to the CVPR'21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet, in which we ranked 1st place out of 1,559 teams and surpassed the runner-up submissions by 4.59% and 23.91% in terms of final score and average image quality level, respectively. Code is available at https://github.com/Equationliu/GA-Attack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源