论文标题

基于甲骨文的稳定组合优化框架

An oracle-based framework for robust combinatorial optimization

论文作者

Bettiol, Enrico, Buchheim, Christoph, De Santis, Marianna, Rinaldi, Francesco

论文摘要

我们提出了一种通用解决方案方法,用于与不确定的线性目标的组合优化问题的最小合格对应物。我们专注于离散方案情况,但是我们的方法可以扩展到其他类型的不确定性集,例如多面体或椭圆形。关于潜在的某些问题,该算法完全基于Oracle,即我们的方法仅需要(原始)算法来解决某些问题。因此,如果很难解决潜在问题,或者仅通过解决特定情况的给定软件来隐式定义,则它特别有用。我们算法的想法是通过简单分解方法解决稳健问题的凸松弛,主要挑战是在离散或多面体不确定性的情况下,目标函数的非差异性。然后将所得的双重界限用于量身定制的分支和结合框架中,以解决最佳性的强大问题。通过计算评估,我们表明我们的方法在强大的最小跨越树问题上优于直接线性化方法。此外,将协和求解器用于某些Oracle,我们的方法在相同的时间内为强大的旅行推销员问题计算出更好的双重界限。

We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem, the algorithm is entirely oracle-based, i.e., our approach only requires a (primal) algorithm for solving the certain problem. It is thus particularly useful in case the underlying problem is hard to solve, or only defined implicitly by a given software addressing the certain case. The idea of our algorithm is to solve the convex relaxation of the robust problem by a simplicial decomposition approach, the main challenge being the non-differentiability of the objective function in the case of discrete or polytopal uncertainty. The resulting dual bounds are then used within a tailored branch-and-bound framework for solving the robust problem to optimality. By a computational evaluation, we show that our method outperforms straightforward linearization approaches on the robust minimum spanning tree problem. Moreover, using the Concorde solver for the certain oracle, our approach computes much better dual bounds for the robust traveling salesman problem in the same amount of time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源