论文标题
在球体平面几何形状中挤压运动的电动阻力
Electroviscous drag on squeezing motion in sphere-plane geometry
论文作者
论文摘要
从理论和实验上讲,我们研究了纳米级毛细管中电荷流耦合导致的电动现象。我们的理论方法依赖于泊松 - 波尔茨曼平均场理论以及电荷和流体动力流的线性关系,包括电渗透和电荷对流。关于不受干扰的Poiseuille流,我们定义了一个电动耦合参数$ξ$,事实证明,在膜厚度$ H_0 $的情况下,最大值是最大的。我们还提供了动态的AFM数据,以用于球体平面几何形状中粘性水膜的粘弹性响应;我们的理论为电动阻力系数和静电排斥提供了定量描述作为膜厚度的函数,表面电荷密度是唯一的自由参数。电荷调节设置在较小的距离处。
Theoretically and experimentally, we study electroviscous phenomena resulting from charge-flow coupling in a nanoscale capillary. Our theoretical approach relies on Poisson-Boltzmann mean-field theory and on coupled linear relations for charge and hydrodynamic flows, including electro-osmosis and charge advection. With respect to the unperturbed Poiseuille flow, we define an electroviscous coupling parameter $ξ$, which turns out to be maximum where the film thickness $h_0$ is comparable to the screening length $λ$. We also present dynamic AFM data for the visco-elastic response of a confined water film in sphere-plane geometry; our theory provides a quantitative description for the electroviscous drag coefficient and the electrostatic repulsion as a function of the film thickness, with the surface charge density as the only free parameter. Charge regulation sets in at even smaller distances.