论文标题
通过一般有效的电阻度量来设计电网中的鲁棒性
Designing for Robustness in Electric Grids via a General Effective Resistance Measure
论文作者
论文摘要
我们提出了一个数学框架,用于通过利用Tyloo等人提出的脆弱性度量来设计耦合相位振荡器的鲁棒网络。这可以量化对相位振荡器的固有频率的小扰动会影响系统的全局同步频率。鉴于固定的复杂网络拓扑具有特定的管理动力学,提出的框架找到了边缘权重的最佳分配,该框架可以最大程度地减少我们期望通过解决可拖动的半决赛编程问题来实现扰动的节点的脆弱性度量。我们将数学模型指定为高压电网格,其中每个节点对应于与总线和边缘相关的电压相位角度对应于传输线。边缘由沿传输线的感应值确定。在此应用中,频率同步越来越受到可再生能源整合的挑战,但对电网的健康和功能毫无疑问。我们的框架通过优化可再生生成的放置以及沿传输线的感知值来帮助缓解这一挑战。
We propose a mathematical framework for designing robust networks of coupled phase-oscillators by leveraging a vulnerability measure proposed by Tyloo et. al that quantifies how much a small perturbation to a phase-oscillator's natural frequency impacts the system's global synchronized frequencies. Given a fixed complex network topology with specific governing dynamics, the proposed framework finds an optimal allocation of edge weights that minimizes such vulnerability measure(s) at the node(s) for which we expect perturbations to occur by solving a tractable semidefinite programming problem. We specify the mathematical model to high voltage electric grids where each node corresponds to a voltage phase angle associated with a bus and edges correspond to transmission lines. Edge weights are determined by the susceptance values along the transmission lines. In this application, frequency synchronization is increasingly challenged by the integration of renewable energy, yet is imperative to the grid's health and functionality. Our framework helps to alleviate this challenge by optimizing the placement of renewable generation and the susceptance values along the transmission lines.