论文标题
COVAR估算的极值方法
An extreme value approach to CoVaR estimation
论文作者
论文摘要
2007 - 2009年的全球金融危机强调了系统性风险在确保金融市场稳定方面发挥的关键作用。准确评估系统性风险将使监管机构能够引入合适的政策以减轻风险,并允许各个机构监视其对市场变动的脆弱性。系统性风险的一种流行度量是危险中的有条件价值(Covar),该风险是Adrian和Brunnermeier(2011)提出的。我们开发了一种方法,可以在多变量极端价值理论的框架内通过半参数估算Covar。根据其定义,Covar可以看作是一个机构(或金融体系)潜在损失的有条件分布的高分子,在这种情况下,调理事件对应于金融体系(或给定金融机构)中的巨大损失。我们将这种条件分布与系统和机构之间的尾巴依赖函数联系起来,然后使用尾部依赖函数的参数建模来解决关节尾区域中的数据稀疏性。我们证明了所提出的估计器的一致性,并通过模拟研究和真实数据示例说明了其性能。
The global financial crisis of 2007-2009 highlighted the crucial role systemic risk plays in ensuring stability of financial markets. Accurate assessment of systemic risk would enable regulators to introduce suitable policies to mitigate the risk as well as allow individual institutions to monitor their vulnerability to market movements. One popular measure of systemic risk is the conditional value-at-risk (CoVaR), proposed in Adrian and Brunnermeier (2011). We develop a methodology to estimate CoVaR semi-parametrically within the framework of multivariate extreme value theory. According to its definition, CoVaR can be viewed as a high quantile of the conditional distribution of one institution's (or the financial system) potential loss, where the conditioning event corresponds to having large losses in the financial system (or the given financial institution). We relate this conditional distribution to the tail dependence function between the system and the institution, then use parametric modelling of the tail dependence function to address data sparsity in the joint tail regions. We prove consistency of the proposed estimator, and illustrate its performance via simulation studies and a real data example.