论文标题

穿着的繁殖者,假孔自能和峰值不确定性

Dressed propagators, fakeon self-energy and peak uncertainty

论文作者

Anselmi, Damiano

论文摘要

在纯虚拟颗粒的情况下,我们将自能量图的重新召集到穿着的繁殖器中,并将结果与​​为物理颗粒和幽灵获得的结果进行比较。这三个几何序列因无限的许多接触术语而不同,这些接触术语不承认明确的总和。由于分析性,只有在物理颗粒的情况下才能达到收敛域之外的峰区域。在其他情况下,非扰动效应变得重要。为了澄清此事,我们在峰值附近介绍了能量分辨率$ΔE$,并认为“峰值” $Δe\gtrsimΔe__ {\ text {min}} \ simeqγ_{\ simeqγ_{\ text {f text {f text {f text {f text {f text {f text {f text {f text {f text {f text $ e vextibility $ e \ e \ simeq m _ _ _ = f text = f text \ f text \ f text \ f text \ simeq m _ _ {假子太接近了,$ m _ {\ text {f}} $是假量质量,$γ_ {\ text {f}} $是假子宽度。 $Δe$的引入对于解释像穆恩这样的不稳定长寿命颗粒的观察也至关重要。实际上,通过常见的能源不确定性关系,每当我们将它们的观察结果与观察到的衰减产物分开时,这种颗粒也会受到$ΔE= 0 $的不确定总和的影响。我们研究了适用于对撞机物理(以及$ z $ boson之一)的大型$γ_{\ text {f}} $的制度,以及适用于量子重力(和诸如muon oon oon Muon的情况)的小$ z $ boson的情况以及小$umγ_{\ text {f text {f text {f text {f}} $。

We study the resummation of self-energy diagrams into dressed propagators in the case of purely virtual particles and compare the results with those obtained for physical particles and ghosts. The three geometric series differ by infinitely many contact terms, which do not admit well-defined sums. The peak region, which is outside the convergence domain, can only be reached in the case of physical particles, thanks to analyticity. In the other cases, nonperturbative effects become important. To clarify the matter, we introduce the energy resolution $ΔE$ around the peak and argue that a "peak uncertainty" $ΔE\gtrsim ΔE_{\text{min}}\simeq Γ_{\text{f}}/2$ around energies $ E\simeq m_{\text{f}}$ expresses the impossibility to approach the fakeon too closely, $m_{\text{f}}$ being the fakeon mass and $Γ_{\text{f}}$ being the fakeon width. The introduction of $ΔE$ is also crucial to explain the observation of unstable long-lived particles, like the muon. Indeed, by the common energy-time uncertainty relation, such particles are also affected by ill-defined sums at $ΔE=0$, whenever we separate their observation from the observation of their decay products. We study the regime of large $Γ_{\text{f}}$, which applies to collider physics (and situations like the one of the $Z$ boson), and the regime of small $Γ_{\text{f}}$, which applies to quantum gravity (and situations like the one of the muon).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源