论文标题
数字化 - 苏绝热量子优化
Digitized-Counterdiabatic Quantum Optimization
论文作者
论文摘要
我们建议对一般ISING Spin-Glass模型的绝热量子优化实现多项式增强,以实现多项式增强,其中包括整个组合组合优化问题,以实现多项式增强。这是通过通过添加非拼写的反糖术语来催化的绝热量子算法的数字化来实现的。后者是适当选择的,不仅是为了逃避经典的模拟性,而且还用于加快性能。使用一般的伊斯丁旋转玻璃哈密顿量的基态用于说明,包括K-局部非拼写的反浸润术语始终可以优于传统的绝热量子量子优化,并用stoquastic hamiltonians优化传统的绝热量子。特别是,我们表明,即使使用最简单的2-局部反耐绝化术语,也可以实现地面成功概率的多项式增强。此外,在基于栅极的量子计算范式中,考虑的数字化过程提供了引入任意非争论相互作用的灵活性。沿着这些线路,使用我们在当前NISQ计算机上提出的范式,可以达到量子加速,以找到NP完整和NP-HARD优化问题的近似解决方案。我们预计DCQO将成为NISQ时代的量子优势的快车范式。
We propose digitized-counterdiabatic quantum optimization (DCQO) to achieve polynomial enhancement over adiabatic quantum optimization for the general Ising spin-glass model, which includes the whole class of combinatorial optimization problems. This is accomplished via the digitization of adiabatic quantum algorithms that are catalysed by the addition of non-stoquastic counterdiabatic terms. The latter are suitably chosen, not only for escaping classical simulability, but also for speeding up the performance. Finding the ground state of a general Ising spin-glass Hamiltonian is used to illustrate that the inclusion of k-local non-stoquastic counterdiabatic terms can always outperform the traditional adiabatic quantum optimization with stoquastic Hamiltonians. In particular, we show that a polynomial enhancement in the ground-state success probability can be achieved for a finite-time evolution, even with the simplest 2-local counterdiabatic terms. Furthermore, the considered digitization process, within the gate-based quantum computing paradigm, provides the flexibility to introduce arbitrary non-stoquastic interactions. Along these lines, using our proposed paradigm on current NISQ computers, quantum speed-up may be reached to find approximate solutions for NP-complete and NP-hard optimization problems. We expect DCQO to become a fast-lane paradigm towards quantum advantage in the NISQ era.