论文标题
通过高斯过程回归对未知动力系统的正式验证
Formal Verification of Unknown Dynamical Systems via Gaussian Process Regression
论文作者
论文摘要
在安全至关重要的情况下利用自主系统需要在影响系统动态的不确定性和黑盒组件的情况下验证其行为。在这项工作中,我们开发了一个框架,用于验证来自输入输出数据集的时间逻辑规范的无模型动力学和噪声测量的离散时间动态系统。该验证框架采用高斯流程(GP)回归来从数据集中学习未知的动态,并将连续空间系统作为有限的状态,不确定的马尔可夫决策过程(MDP)抽象。这种抽象取决于空间离散和过渡概率间隔,这些间隔通过使用可重复的核希尔伯特空间分析以及离散化引起的不确定性来捕获由于GP回归误差而导致的不确定性。该框架利用现有的模型检查工具来验证给定时间逻辑规范的不确定的MDP抽象。我们确定了扩展验证结果的正确性,该结果是从噪声测量到基础系统创建的抽象。我们表明,该框架的计算复杂性在数据集和离散抽象的大小上是多项式。复杂性分析说明了验证结果质量与计算负担之间的权衡,以处理更大的数据集和更精细的抽象。最后,我们证明了我们的学习和验证框架对通过线性,非线性和开关动态系统进行多个案例研究的功效。
Leveraging autonomous systems in safety-critical scenarios requires verifying their behaviors in the presence of uncertainties and black-box components that influence the system dynamics. In this work, we develop a framework for verifying discrete-time dynamical systems with unmodelled dynamics and noisy measurements against temporal logic specifications from an input-output dataset. The verification framework employs Gaussian process (GP) regression to learn the unknown dynamics from the dataset and abstracts the continuous-space system as a finite-state, uncertain Markov decision process (MDP). This abstraction relies on space discretization and transition probability intervals that capture the uncertainty due to the error in GP regression by using reproducible kernel Hilbert space analysis as well as the uncertainty induced by discretization. The framework utilizes existing model checking tools for verification of the uncertain MDP abstraction against a given temporal logic specification. We establish the correctness of extending the verification results on the abstraction created from noisy measurements to the underlying system. We show that the computational complexity of the framework is polynomial in the size of the dataset and discrete abstraction. The complexity analysis illustrates a trade-off between the quality of the verification results and the computational burden to handle larger datasets and finer abstractions. Finally, we demonstrate the efficacy of our learning and verification framework on several case studies with linear, nonlinear, and switched dynamical systems.