论文标题
部分可观测时空混沌系统的无模型预测
Novelty-based Generalization Evaluation for Traffic Light Detection
论文作者
论文摘要
卷积神经网络(CNN)的出现导致其在几个领域的应用。一个值得注意的应用程序是依赖CNN预测的自动驾驶的感知系统。从业者通过在独立的测试数据集中计算各种指标来评估此类CNN的概括能力。通常仅根据一个前提条件来选择测试数据集,即其元素不是培训数据的一部分。这样的数据集可能包含相似和新颖的W.R.T.的对象。培训数据集。然而,现有作品并不认为测试样本的新颖性,并同样对其进行评估。这种基于新颖的评估对于验证CNN在自主驾驶应用中的适应性具有重要意义。因此,我们提出了一个CNN泛化评分框架,该框架考虑了测试数据集中对象的新颖性。我们从表示技术开始,将图像数据减少到低维空间。正是在这个空间,我们估计了测试样品的新颖性。最后,我们将概括得分计算为测试数据预测性能和新颖性的组合。我们针对我们的交通光检测应用进行了一项实验研究。此外,我们系统地将结果可解决可解释的新颖概念。
The advent of Convolutional Neural Networks (CNNs) has led to their application in several domains. One noteworthy application is the perception system for autonomous driving that relies on the predictions from CNNs. Practitioners evaluate the generalization ability of such CNNs by calculating various metrics on an independent test dataset. A test dataset is often chosen based on only one precondition, i.e., its elements are not a part of the training data. Such a dataset may contain objects that are both similar and novel w.r.t. the training dataset. Nevertheless, existing works do not reckon the novelty of the test samples and treat them all equally for evaluating generalization. Such novelty-based evaluations are of significance to validate the fitness of a CNN in autonomous driving applications. Hence, we propose a CNN generalization scoring framework that considers novelty of objects in the test dataset. We begin with the representation learning technique to reduce the image data into a low-dimensional space. It is on this space we estimate the novelty of the test samples. Finally, we calculate the generalization score as a combination of the test data prediction performance and novelty. We perform an experimental study of the same for our traffic light detection application. In addition, we systematically visualize the results for an interpretable notion of novelty.