论文标题

部分可观测时空混沌系统的无模型预测

Centre Symmetric Quadruple Pattern: A Novel Descriptor for Facial Image Recognition and Retrieval

论文作者

Chakraborty, Soumendu, Singh, Satish Kumar, Chakraborty, Pavan

论文摘要

面部特征定义为面部图像像素之间存在的局部关系。手工制作的描述符确定了内核定义的本地社区中像素的关系。内核是一个二维矩阵,它在面部图像上移动。内核捕获的独特信息具有有限数量的像素数量,可以在受约束环境下拍摄的面部图像(在光,姿势,表情和背景中受控变化)获得令人满意的识别和检索精度。为了在不受约束的环境下实现类似的准确性,必须增加本地社区,以编码更多像素。增加本地社区还会增加描述符的特征长度。在本文中,我们提出了一个手工制作的描述符,即中心对称四核模式(CSQP),该模式在结构上对称,并编码四倍空间中的面部不对称性。提出的描述符有效地编码了具有最佳数量二进制位的较大邻域。已经使用平均熵显示了与所提出的描述符编码的特征图像计算的,与最先进的描述符相比,CSQP捕获了更有意义的信息。已将提议描述符的检索和识别精度与基准数据库中的手工制作的描述符(CSLBP,CSLTP,LDP,LBP,SLBP和LDGP)进行了比较。 LFW,Colour-fefet和Casia-Face-V5。结果分析表明,所提出的描述符在受控以及姿势,照明,背景和表达式的不受控制的变化下表现良好。

Facial features are defined as the local relationships that exist amongst the pixels of a facial image. Hand-crafted descriptors identify the relationships of the pixels in the local neighbourhood defined by the kernel. Kernel is a two dimensional matrix which is moved across the facial image. Distinctive information captured by the kernel with limited number of pixel achieves satisfactory recognition and retrieval accuracies on facial images taken under constrained environment (controlled variations in light, pose, expressions, and background). To achieve similar accuracies under unconstrained environment local neighbourhood has to be increased, in order to encode more pixels. Increasing local neighbourhood also increases the feature length of the descriptor. In this paper we propose a hand-crafted descriptor namely Centre Symmetric Quadruple Pattern (CSQP), which is structurally symmetric and encodes the facial asymmetry in quadruple space. The proposed descriptor efficiently encodes larger neighbourhood with optimal number of binary bits. It has been shown using average entropy, computed over feature images encoded with the proposed descriptor, that the CSQP captures more meaningful information as compared to state of the art descriptors. The retrieval and recognition accuracies of the proposed descriptor has been compared with state of the art hand-crafted descriptors (CSLBP, CSLTP, LDP, LBP, SLBP and LDGP) on bench mark databases namely; LFW, Colour-FERET, and CASIA-face-v5. Result analysis shows that the proposed descriptor performs well under controlled as well as uncontrolled variations in pose, illumination, background and expressions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源