论文标题
大型网络图的基于聚类的分区
Clustering-based Partitioning for Large Web Graphs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Graph partitioning plays a vital role in distributedlarge-scale web graph analytics, such as pagerank and labelpropagation. The quality and scalability of partitioning strategyhave a strong impact on such communication- and computation-intensive applications, since it drives the communication costand the workload balance among distributed computing nodes.Recently, the streaming model shows promise in optimizing graphpartitioning. However, existing streaming partitioning strategieseither lack of adequate quality or fall short in scaling with alarge number of partitions.In this work, we explore the property of web graph clusteringand propose a novel restreaming algorithm for vertex-cut parti-tioning. We investigate a series of techniques, which are pipelinedas three steps, streaming clustering, cluster partitioning, andpartition transformation. More, these techniques can be adaptedto a parallel mechanism for further acceleration of partitioning.Experiments on real datasets and real systems show that ouralgorithm outperforms state-of-the-art vertex-cut partitioningmethods in large-scale web graph processing. Surprisingly, theruntime cost of our method can be an order of magnitude lowerthan that of one-pass streaming partitioning algorithms, whenthe number of partitions is large.