论文标题
数据驱动的传感器部署用于时空现场重建
Data-driven Sensor Deployment for Spatiotemporal Field Reconstruction
论文作者
论文摘要
本文涉及大型时空场中数据驱动的传感器部署问题。传统上,传感器部署策略在很大程度上取决于基于模型的计划方法。但是,基于模型的方法通常不会最大化该领域的信息增益,这往往会产生效率较低的采样位置并导致高重建误差。在本文中,开发了一种数据驱动的方法来克服基于模型的方法的缺点并提高时空场重建精度。提出的方法可以选择最有用的采样位置来表示整个时空场。为此,提出的方法使用主成分分析(PCA)分解了时空场,并找到了主要基础的顶级基本实体。所选实体的相应采样位置被视为传感器部署位置。然后可以使用在选定的传感器部署位置收集的观测值准确地重建时空场。使用国家海洋和大气管理海面温度数据集证明了结果。在本研究中,提出的方法达到了所有方法之间最低的重建误差。
This paper concerns the data-driven sensor deployment problem in large spatiotemporal fields. Traditionally, sensor deployment strategies have been heavily dependent on model-based planning approaches. However, model-based approaches do not typically maximize the information gain in the field, which tends to generate less effective sampling locations and lead to high reconstruction error. In the present paper, a data-driven approach is developed to overcome the drawbacks of the model-based approach and improve the spatiotemporal field reconstruction accuracy. The proposed method can select the most informative sampling locations to represent the entire spatiotemporal field. To this end, the proposed method decomposes the spatiotemporal field using principal component analysis (PCA) and finds the top r essential entities of the principal basis. The corresponding sampling locations of the selected entities are regarded as the sensor deployment locations. The observations collected at the selected sensor deployment locations can then be used to reconstruct the spatiotemporal field, accurately. Results are demonstrated using a National Oceanic and Atmospheric Administration sea surface temperature dataset. In the present study, the proposed method achieved the lowest reconstruction error among all methods.