论文标题
V-Linknet:在生成对抗网络的潜在空间之间学习上下文插图
V-LinkNet: Learning Contextual Inpainting Across Latent Space of Generative Adversarial Network
论文作者
论文摘要
图像插入是图像处理任务中的关键技术,可以预测缺失区域并生成逼真的图像。鉴于具有特征提取,繁殖和重建功能的现有生成介质模型的发展,因此缺乏更深层的高质量特征提取和转移机制,无法在生成的未生成区域解决持续的畸变。我们的方法V-linknet将高级特征转移到我们工作的深层质地上下文上,提出了一种通过递归残余过渡层(RSTL)结合编码器学习的新技术。 RSTL层通过直接通信来增加唯一的语义信息来轻松调整双重编码。通过使用上下文化的特征表示损失函数来协作双重编码器结构,我们的系统可以获得对高级功能进行注册的能力。为了减少随机掩码图像配对的偏见,我们在Celeba-HQ,Paris Street View和Place2数据集的测试集上引入了标准协议,并带有配对的掩码图像。我们的结果表明,使用此标准协议,V-Linknet在Celeba-HQ和Paris Street View上表现更好。我们将在接受本文后与研究社区共享标准协议和代码。
Image inpainting is a key technique in image processing task to predict the missing regions and generate realistic images. Given the advancement of existing generative inpainting models with feature extraction, propagation and reconstruction capabilities, there is lack of high-quality feature extraction and transfer mechanisms in deeper layers to tackle persistent aberrations on the generated inpainted regions. Our method, V-LinkNet, develops high-level feature transference to deep level textural context of inpainted regions our work, proposes a novel technique of combining encoders learning through a recursive residual transition layer (RSTL). The RSTL layer easily adapts dual encoders by increasing the unique semantic information through direct communication. By collaborating the dual encoders structure with contextualised feature representation loss function, our system gains the ability to inpaint with high-level features. To reduce biases from random mask-image pairing, we introduce a standard protocol with paired mask-image on the testing set of CelebA-HQ, Paris Street View and Places2 datasets. Our results show V-LinkNet performed better on CelebA-HQ and Paris Street View using this standard protocol. We will share the standard protocol and our codes with the research community upon acceptance of this paper.