论文标题

通过利用未标记的RGB图像来提高RGB-D显着性检测

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images

论文作者

Wang, Xiaoqiang, Zhu, Lei, Tang, Siliang, Fu, Huazhu, Li, Ping, Wu, Fei, Yang, Yi, Zhuang, Yueting

论文摘要

RGB-D显着对象检测(SOD)的训练深层模型通常需要大量标记的RGB-D图像。但是,RGB-D数据不容易获取,这限制了RGB-D SOD技术的开发。为了减轻此问题,我们提出了一个双Semi RGB-D显着对象检测网络(DS-NET),以利用未标记的RGB图像来增强RGB-D显着性检测。我们首先设计了一个深度解耦卷积神经网络(DDCNN),其中包含深度估计分支和显着性检测分支。深度估计分支是用RGB-D图像训练的,然后用于估算所有未标记的RGB图像的伪深度图,以形成配对数据。显着检测分支用于融合RGB功能和深度特征,以预测RGB-D显着性。然后,整个DDCNN被指定为半监督学习的教师学生框架中的骨干。此外,我们还引入了未标记数据的中间注意力和显着性图的一致性损失,以及标记数据的监督深度和显着性损失。七个广泛使用的基准数据集的实验结果表明,我们的DDCNN在定量和质量上都优于最先进的方法。我们还证明,即使在使用伪深度图的RGB图像时,我们的半监督DS-NET也可以进一步提高性能。

Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images. However, RGB-D data is not easily acquired, which limits the development of RGB-D SOD techniques. To alleviate this issue, we present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection. We first devise a depth decoupling convolutional neural network (DDCNN), which contains a depth estimation branch and a saliency detection branch. The depth estimation branch is trained with RGB-D images and then used to estimate the pseudo depth maps for all unlabeled RGB images to form the paired data. The saliency detection branch is used to fuse the RGB feature and depth feature to predict the RGB-D saliency. Then, the whole DDCNN is assigned as the backbone in a teacher-student framework for semi-supervised learning. Moreover, we also introduce a consistency loss on the intermediate attention and saliency maps for the unlabeled data, as well as a supervised depth and saliency loss for labeled data. Experimental results on seven widely-used benchmark datasets demonstrate that our DDCNN outperforms state-of-the-art methods both quantitatively and qualitatively. We also demonstrate that our semi-supervised DS-Net can further improve the performance, even when using an RGB image with the pseudo depth map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源