论文标题
Weyl-Kondo半学到Zeeman耦合的极端拓扑可调性
Extreme topological tunability of Weyl-Kondo semimetal to Zeeman coupling
论文作者
论文摘要
相关性和拓扑的交汇处,尤其是金属系统,人们非常感兴趣。在杰出的问题中,有很强的相关性如何推动新的拓扑状态以及是否可以轻易控制此类状态。在这里,我们研究了Zeeman耦合对非肌和非中心对称性伴晶型模型中Weyl-Kondo半学的影响。发现了一系列独特的和拓扑的非平凡的半学体,每种序列都包含亲旋驱动和Fermi-Energy结合的Weyl节点。节点在磁场上歼灭,该磁场小于抑制近代效应所需的节点。因此,我们展示了一种极端的拓扑可调节性,该可调节性与强相关本身的调整分离出来。我们的结果对于在密切相关的系统中的实验非常重要,并为绘制全球相图的阶段奠定了基础,以实现强相关的拓扑结构。
There is considerable interest in the intersection of correlations and topology, especially in metallic systems. Among the outstanding questions are how strong correlations drive novel topological states and whether such states can be readily controlled. Here we study the effect of a Zeeman coupling on a Weyl-Kondo semimetal in a nonsymmorphic and noncentrosymmetric Kondo-lattice model. A sequence of distinct and topologically nontrivial semimetal regimes are found, each containing Kondo-driven and Fermi-energy-bound Weyl nodes. The nodes annihilate at a magnetic field that is smaller than what it takes to suppress the Kondo effect. As such, we demonstrate an extreme topological tunability that is isolated from the tuning of the strong correlations per se. Our results are important for experiments in strongly correlated systems, and set the stage for mapping out a global phase diagram for strongly correlated topology.