论文标题
教育内容链接以增强MOOC的学习需要补救
Educational Content Linking for Enhancing Learning Need Remediation in MOOCs
论文作者
论文摘要
自2011年推出以来,网络上有超过4000个MOOC,为超过3500万的学习者提供服务。 MOOC已经表明了使知识传播并将世界上最好的教育传播到每个学习者的能力。但是,参与者之间的不同距离,学习者人口的规模以及学习者背景的异质性使教师很难及时与学习者互动,这会对学习经验产生不利影响。为了解决挑战,在本文中,我们提出了一个框架:教育内容链接。通过将分散在各种课程材料中的学习内容链接到易于访问的结构中,我们假设该框架可以为学习者提供指导并改善内容导航。由于MOOC中的大多数指导和知识获取都是在学习者正在调查课程材料时进行的,因此更好的内容导航可以帮助学习者找到支持信息以解决他们的混乱,从而改善学习成果和经验。为了支持我们的猜想,我们提出了端到端的研究,以围绕两个研究问题调查我们的框架:1)可以手动产生的链接链接改善学习吗? 2)可以通过机器学习方法生成学习内容吗?为了研究第一个问题,我们构建了一个界面,该界面介绍了学习材料并同时可视化链接。我们发现该界面使用户能够更有效地搜索所需的课程材料,并更容易保留更多的概念。对于第二个问题,我们提出了一个基于条件随机字段的自动内容,该内容链接算法。我们证明,自动生成的链接仍然可以带来更好的学习,尽管对未链接接口的改进的幅度较小。
Since its introduction in 2011, there have been over 4000 MOOCs on various subjects on the Web, serving over 35 million learners. MOOCs have shown the ability to democratize knowledge dissemination and bring the best education in the world to every learner. However, the disparate distances between participants, the size of the learner population, and the heterogeneity of the learners' backgrounds make it extremely difficult for instructors to interact with the learners in a timely manner, which adversely affects learning experience. To address the challenges, in this thesis, we propose a framework: educational content linking. By linking and organizing pieces of learning content scattered in various course materials into an easily accessible structure, we hypothesize that this framework can provide learners guidance and improve content navigation. Since most instruction and knowledge acquisition in MOOCs takes place when learners are surveying course materials, better content navigation may help learners find supporting information to resolve their confusion and thus improve learning outcome and experience. To support our conjecture, we present end-to-end studies to investigate our framework around two research questions: 1) can manually generated linking improve learning? 2) can learning content be generated with machine learning methods? For studying the first question, we built an interface that present learning materials and visualize the linking among them simultaneously. We found the interface enables users to search for desired course materials more efficiently, and retain more concepts more readily. For the second question, we propose an automatic content linking algorithm based on conditional random fields. We demonstrate that automatically generated linking can still lead to better learning, although the magnitude of the improvement over the unlinked interface is smaller.