论文标题
可链连续的喂食和杀死终点
Feeding and killing end points in chainable continua
论文作者
论文摘要
使用经典的奇异性凝结技术,我们证明,对于每一个零维,可分离的度量空间$ g $,都有一个苏斯兰式,可连锁的度量连续体,其一组终点是同型至$ g $。这回答了R. Adikari和W. Lewis在[休斯顿J. Math。 45(2019),没有。 2,第609--624页。
Using the classical technique of condensation of singularities, we prove that, for every zero-dimensional, complete separable metric space $G$, there exists a Suslinian, chainable metric continuum whose set of end points is homeomorphic to $G$. This answers a question posed by R. Adikari and W. Lewis in [Houston J. Math. 45 (2019), no. 2, pp. 609--624].