论文标题

通过Laguerre多项式进行孵育和发电时间的半参数估计

Semi-Parametric Estimation of Incubation and Generation Times by Means of Laguerre Polynomials

论文作者

Kreiss, Alexander, Van Keilegom, Ingrid

论文摘要

在流行病中,许多有趣的数量(例如繁殖数量)取决于孵化期(从感染到症状发作的时间)和/或生成时间(直到新人被另一个受感染者感染的时间)。因此,对这两个数量的分布的估计是独特的。但是,这是一个具有挑战性的问题,因为通常无法获得这两个变量的精确观察结果。取而代之的是,在大流行的开始时,可​​以观察到感染对人的症状发作时间以及第一人称感染的窗口(例如,由于前往风险区域的旅行)。在本文中,我们建议一种基于laguerre-Polynomials的简单半参数估计方法,用于估计这些分布。我们提供详细的理论,以保持一致性,并通过仿真研究说明了小数据集的有限样本性能。

In epidemics many interesting quantities, like the reproduction number, depend on the incubation period (time from infection to symptom onset) and/or the generation time (time until a new person is infected from another infected person). Therefore, estimation of the distribution of these two quantities is of distinct interest. However, this is a challenging problem since it is normally not possible to obtain precise observations of these two variables. Instead, in the beginning of a pandemic, it is possible to observe for infection pairs the time of symptom onset for both people as well as a window for infection of the first person (e.g. because of travel to a risk area). In this paper we suggest a simple semi-parametric sieve-estimation method based on Laguerre-Polynomials for estimation of these distributions. We provide detailed theory for consistency and illustrate the finite sample performance for small datasets via a simulation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源