论文标题

发现开放域对话框的对话框结构图

Discovering Dialog Structure Graph for Open-Domain Dialog Generation

论文作者

Xu, Jun, Lei, Zeyang, Wang, Haifeng, Niu, Zheng-Yu, Wu, Hua, Che, Wanxiang, Liu, Ting

论文摘要

从人类对话中学习可解释的对话结构可以对对话结构产生基本见解,还提供了背景知识以促进对话生成。在本文中,我们从Chitchat Corpora中无监督发现对话结构,然后利用它来促进下游系统中的对话生成。为此,我们通过图神经网络(DVAE-GNN)提出了一个离散的变分自动编码器,以发现统一的人类可读对话框结构。该结构是一个两层有向图,其中包含上层顶点中的会话级语义,下层顶点中的话语级语义以及这些语义顶点之间的边缘。特别是,我们将GNN集成到DVAE中,以更有效地识别会话级的语义顶点。此外,为了减轻发现大量话语级语义的困难,我们设计了一种耦合机制,该机制将每个话语级的语义顶点绑定,并用独特的短语来提供先前的语义。两个基准语料库的实验结果证实,dvae-gnn可以发现有意义的对话结构,并且对话框结构图作为背景知识可以促进扎根的对话系统来进行连贯的多转向对话框的生成。

Learning interpretable dialog structure from human-human dialogs yields basic insights into the structure of conversation, and also provides background knowledge to facilitate dialog generation. In this paper, we conduct unsupervised discovery of dialog structure from chitchat corpora, and then leverage it to facilitate dialog generation in downstream systems. To this end, we present a Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover a unified human-readable dialog structure. The structure is a two-layer directed graph that contains session-level semantics in the upper-layer vertices, utterance-level semantics in the lower-layer vertices, and edges among these semantic vertices. In particular, we integrate GNN into DVAE to fine-tune utterance-level semantics for more effective recognition of session-level semantic vertex. Furthermore, to alleviate the difficulty of discovering a large number of utterance-level semantics, we design a coupling mechanism that binds each utterance-level semantic vertex with a distinct phrase to provide prior semantics. Experimental results on two benchmark corpora confirm that DVAE-GNN can discover meaningful dialog structure, and the use of dialog structure graph as background knowledge can facilitate a graph grounded conversational system to conduct coherent multi-turn dialog generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源