论文标题
任何N-组件非线性schrödinger模型
Parity-time-symmetric vector rational rogue wave solutions in any n-component nonlinear Schrödinger models
论文作者
论文摘要
对聚焦的类似Kerr的非线性媒体的$ n $组成的非线性Schrödinger($ n $ -nls)系统的极端事件进行了研究,该系统出现在许多物理领域。我们报告并讨论了具有平等时间(PT)对称性的矢量理性流氓波(RW)解决方案的新型多参数家族,其特征在于该组件的非相同边界条件,并且与本杰明 - 费用不稳定的$ N $分支的退化一致。提出了PT对称载体RW的明确例子。由于多体谐振相互作用,某些参数约束可以使某些组件产生具有较高振幅的RW。该模型对向量RWS激发的不可积分变形的效果也讨论了。这些结果对于在多组分物理系统中设计RW实验将很有用。
The extreme events are investigated for an $n$-component nonlinear Schrödinger ($n$-NLS) system in the focusing Kerr-like nonlinear media, which appears in many physical fields. We report and discuss the novel multi-parametric families of vector rational rogue wave (RW) solutions featuring the parity-time (PT) symmetry, which are characterized by non-identical boundary conditions for the components, and consistent with the degeneracy of $n$ branches of Benjamin-Feir instability. Explicit examples of PT-symmetric vector RWs are presented. Some parameter constraints can make some components generate the RWs with high amplitudes due to many-body resonant interactions.Effect of a non-integrable deformation of the model on the excitation of vector RWs is also discussed. These results will be useful to design the RW experiments in multi-component physical systems.