论文标题

通过表格财务数据进行信用风险监控的顺序深度学习

Sequential Deep Learning for Credit Risk Monitoring with Tabular Financial Data

论文作者

Clements, Jillian M., Xu, Di, Yousefi, Nooshin, Efimov, Dmitry

论文摘要

机器学习在防止银行业的财务损失方面起着至关重要的作用。也许每年可能导致数十亿美元损失的最相关预测任务是评估信用风险(即违约债务风险)。如今,机器学习从机器学习到预测信用风险的许多收益都是由梯度提升的决策树模型驱动的。但是,这些收益开始平稳,而没有添加昂贵的新数据源或高度设计的功能。在本文中,我们提出了一种尝试使用不依赖新模型输入的深度学习来评估信用风险的新方法来评估信用风险的尝试。我们提出了一种新的信用卡交易抽样技术,可与基于深度和因果关系的神经网络一起使用,该技术利用了较长的财务数据历史序列而无需昂贵的资源需求。我们表明,我们使用时间卷积网络的顺序深度学习方法优于基于基于树的基于基于树的模型,从而实现了大量的财务节省和更早的信用风险检测。我们还证明了在生产环境中使用方法的潜力,在生产环境中,我们的抽样技术允许序列有效地存储在内存中,并用于快速的在线学习和推理。

Machine learning plays an essential role in preventing financial losses in the banking industry. Perhaps the most pertinent prediction task that can result in billions of dollars in losses each year is the assessment of credit risk (i.e., the risk of default on debt). Today, much of the gains from machine learning to predict credit risk are driven by gradient boosted decision tree models. However, these gains begin to plateau without the addition of expensive new data sources or highly engineered features. In this paper, we present our attempts to create a novel approach to assessing credit risk using deep learning that does not rely on new model inputs. We propose a new credit card transaction sampling technique to use with deep recurrent and causal convolution-based neural networks that exploits long historical sequences of financial data without costly resource requirements. We show that our sequential deep learning approach using a temporal convolutional network outperformed the benchmark non-sequential tree-based model, achieving significant financial savings and earlier detection of credit risk. We also demonstrate the potential for our approach to be used in a production environment, where our sampling technique allows for sequences to be stored efficiently in memory and used for fast online learning and inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源