论文标题
$ \ MATHCAL {N} = 4 $ $ USP(2N_C)$和$ SO(N_C)$ SYM作为矩阵积分
The superconformal index of $\mathcal{N}=4$ $USp(2N_c)$ and $SO(N_c)$ SYM as a matrix integral
论文作者
论文摘要
我们从矩阵模型的角度研究了4D $ \ MATHCAL {N} = 4 $ $ USP(2N_C)$的超符号索引= 4 $ $ usp(2n_c)$。我们专注于索引的类似型号的极限。在符号和正交的情况下,指数都以鞍点解的主导,我们将计算降低为三个球体上纯Chern-Simons理论的矩阵积分。我们进一步计算了具有量规组中心的顺序校正校正校正。在$ USP(2N_C)$案例中,我们还研究了矩阵积分的其他跨座鞍。最后,我们与$ SU(N_C)$ gauge组讨论了Leigh-Strassler固定点的情况,并通过熵函数的Legendre变换来计算双黑洞的熵。
We study the superconformal index of 4d $\mathcal{N}=4$ $USp(2N_c)$ and $SO(N_c)$ SYM from a matrix model perspective. We focus on the Cardy-like limit of the index. Both in the symplectic and orthogonal case the index is dominated by a saddle point solution which we identify, reducing the calculation to a matrix integral of a pure Chern-Simons theory on the three-sphere. We further compute the subleading logarithmic corrections, which are of the order of the center of the gauge group. In the $USp(2N_c)$ case we also study other subleading saddles of the matrix integral. Finally we discuss the case of the Leigh-Strassler fixed point with $SU(N_c)$ gauge group, and we compute the entropy of the dual black hole from the Legendre transform of the entropy function.