论文标题

双向映射耦合gan用于广义零摄

Bidirectional Mapping Coupled GAN for Generalized Zero-Shot Learning

论文作者

Shermin, Tasfia, Teng, Shyh Wei, Sohel, Ferdous, Murshed, Manzur, Lu, Guojun

论文摘要

基于双向映射的广义零拍学习(GZSL)方法依赖于合成特征的质量来识别和看不见的数据。因此,学习可见的未见领域的联合分布和保存域的区别对于这些方法至关重要。但是,现有方法仅学习可见数据的基本分布,尽管在GZSL问题设置中可以使用看不见的类语义。大多数方法忽略了保留域的区别,并使用学习的分布来识别和看不见的数据。因此,它们表现不佳。在这项工作中,我们利用可用的看不见的类语义以及可见的类语义,并通过强烈的视觉语义耦合来学习联合分布。我们通过将耦合的生成对抗网络扩展到双向域学习双向映射模型来提出双向映射耦合生成对抗网络(BMCOGAN)。我们进一步整合了Wasserstein生成的对抗优化,以监督联合分布学习。我们设计了一种损失优化,用于在合成的特征中保留域独特信息,并减少对可见类的偏见,从而将合成的可见特征推向真实的可见特征,并将综合看不见的特征拉开远离真实可见特征。我们在基准数据集上评估了BMCOGAN,并在当代方法上证明了其出色的性能。

Bidirectional mapping-based generalized zero-shot learning (GZSL) methods rely on the quality of synthesized features to recognize seen and unseen data. Therefore, learning a joint distribution of seen-unseen domains and preserving domain distinction is crucial for these methods. However, existing methods only learn the underlying distribution of seen data, although unseen class semantics are available in the GZSL problem setting. Most methods neglect retaining domain distinction and use the learned distribution to recognize seen and unseen data. Consequently, they do not perform well. In this work, we utilize the available unseen class semantics alongside seen class semantics and learn joint distribution through a strong visual-semantic coupling. We propose a bidirectional mapping coupled generative adversarial network (BMCoGAN) by extending the coupled generative adversarial network into a dual-domain learning bidirectional mapping model. We further integrate a Wasserstein generative adversarial optimization to supervise the joint distribution learning. We design a loss optimization for retaining domain distinctive information in the synthesized features and reducing bias towards seen classes, which pushes synthesized seen features towards real seen features and pulls synthesized unseen features away from real seen features. We evaluate BMCoGAN on benchmark datasets and demonstrate its superior performance against contemporary methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源