论文标题
标志性Gibonacci多项式
Sign-alternating Gibonacci polynomials
论文作者
论文摘要
我们考虑了与斐波那契序列的某些概括有关的右三角整数阵列所产生的某些标志性单变量多项式的各种特性和表现。使用由J. L. Gross,T。Mansour,T。W。Tucker和D. G. L. Wang开发的多项式序列的根几何学理论,我们表明这些``真实gibonacci polynomials''的根是真实的和独特的,并且我们在这些Roots上获得了明确的界限。我们还得出多项式的BINET型封闭表达式。其中一些结果用于解决与以众所周知的难题为建模的单玩家组合游戏(或拼图)有关的有限问题,我们称之为“网络数字游戏”。在其他地方,一名和第二名的作者与A. Nance合作发现了对称对称的“钻石色”分配格,这与特殊线性谎言代数的某些表示自然相关。这些晶格基础性可以使用签名fibonacci多项式计算,并且晶格等级生成函数对应于一些新的且易于定义的三角形整数阵列的行。在这里,我们介绍了这些对称的斐波那酸晶格/结果的Gibonaccian,尤其是Lucasian,但没有后者的代数背景。
We consider various properties and manifestations of some sign-alternating univariate polynomials borne of right-triangular integer arrays related to certain generalizations of the Fibonacci sequence. Using a theory of the root geometry of polynomial sequences developed by J. L. Gross, T. Mansour, T. W. Tucker, and D. G. L. Wang, we show that the roots of these `sign-alternating Gibonacci polynomials' are real and distinct, and we obtain explicit bounds on these roots. We also derive Binet-type closed expressions for the polynomials. Some of these results are applied to resolve finiteness questions pertaining to a one-player combinatorial game (or puzzle) modelled after a well-known puzzle we call the `Networked-numbers Game.' Elsewhere, the first- and second-named authors, in collaboration with A. Nance, have found rank symmetric `diamond-colored' distributive lattices naturally related to certain representations of the special linear Lie algebras. Those lattice cardinalities can be computed using sign-alternating Fibonacci polynomials, and the lattice rank generating functions correspond to the rows of some new and easily defined triangular integer arrays. Here, we present Gibonaccian, and in particular Lucasian, versions of those symmetric Fibonaccian lattices/results, but without the algebraic context of the latter.