论文标题
通过语言校准减少对话代理的过度自信
Reducing conversational agents' overconfidence through linguistic calibration
论文作者
论文摘要
尽管改善神经对话代理的事实准确性是大量研究的对象,但在神经对话的环境中,沟通的另一个重要方面是对无知的透明度。在这项工作中,我们分析了最先进的聊天模型在语言上进行了校准,其言语表达(或信心)与该模型的响应实际上是不正确(或正确)的可能性相匹配的。我们发现这些模型的校准很差,但是我们表明可以准确预测正确性的可能性。通过将这种元认知特征纳入可控生成模型的训练中,我们获得了具有大大改善语言校准的对话代理。尽管改善神经对话代理的事实准确性是大量研究的对象,但在神经对话的环境中,沟通的另一个重要方面是对无知的透明度。在这项工作中,我们分析了最先进的聊天模型在语言上进行了校准,其言语表达(或信心)与该模型的响应实际上是不正确(或正确)的可能性相匹配的。我们发现这些模型的校准很差,但是我们表明可以准确预测正确性的可能性。通过将这种元认知特征纳入可控生成模型的训练中,我们获得了具有大大改善语言校准的对话代理。
While improving neural dialogue agents' factual accuracy is the object of much research, another important aspect of communication, less studied in the setting of neural dialogue, is transparency about ignorance. In this work, we analyze to what extent state-of-the-art chit-chat models are linguistically calibrated in the sense that their verbalized expression of doubt (or confidence) matches the likelihood that the model's responses are factually incorrect (or correct). We find that these models are poorly calibrated, yet we show that likelihood of correctness can accurately be predicted. By incorporating such metacognitive features into the training of a controllable generation model, we obtain a dialogue agent with greatly improved linguistic calibration. While improving neural dialogue agents' factual accuracy is the object of much research, another important aspect of communication, less studied in the setting of neural dialogue, is transparency about ignorance. In this work, we analyze to what extent state-of-the-art chit-chat models are linguistically calibrated in the sense that their verbalized expression of doubt (or confidence) matches the likelihood that the model's responses are factually incorrect (or correct). We find that these models are poorly calibrated, yet we show that likelihood of correctness can accurately be predicted. By incorporating such metacognitive features into the training of a controllable generation model, we obtain a dialogue agent with greatly improved linguistic calibration.