论文标题
贝叶斯学习系统动力学中的控制障碍
Control Barriers in Bayesian Learning of System Dynamics
论文作者
论文摘要
本文着重于在线学习系统动态模型,同时满足安全性限制。我们的目标是避免离线系统识别或手工指定的模型,并允许系统在操作过程中安全,自主估计并调整自己的模型。给定对系统状态的流媒体观察,我们使用贝叶斯学习来获得系统动力学的分布。具体而言,我们提出了一种新的矩阵变量高斯过程(MVGP)回归方法,并具有有效的协方差分解,以了解非线性控制膜系统的漂移和输入增益项。然后,通过指定控制Lyapunov功能(CLF)和控制屏障功能(CBF)机会约束,使用MVGP分布来优化系统行为并以高概率确保安全性。我们表明,可以通过解决二阶锥体计划(SOCP)来综合具有任意相对程度和概率CLF-CBF约束的系统的安全控制策略。最后,我们将设计扩展到一个自触发的公式,自适应地确定需要应用新的控制输入以确保安全性的时间。
This paper focuses on learning a model of system dynamics online while satisfying safety constraints. Our objective is to avoid offline system identification or hand-specified models and allow a system to safely and autonomously estimate and adapt its own model during operation. Given streaming observations of the system state, we use Bayesian learning to obtain a distribution over the system dynamics. Specifically, we propose a new matrix variate Gaussian process (MVGP) regression approach with an efficient covariance factorization to learn the drift and input gain terms of a nonlinear control-affine system. The MVGP distribution is then used to optimize the system behavior and ensure safety with high probability, by specifying control Lyapunov function (CLF) and control barrier function (CBF) chance constraints. We show that a safe control policy can be synthesized for systems with arbitrary relative degree and probabilistic CLF-CBF constraints by solving a second order cone program (SOCP). Finally, we extend our design to a self-triggering formulation, adaptively determining the time at which a new control input needs to be applied in order to guarantee safety.