论文标题

Wronskian指数和理性的形式理论

Wronskian Indices and Rational Conformal Field Theories

论文作者

Das, Arpit, Gowdigere, Chethan N., Santara, Jagannath

论文摘要

由Mathur-Mukhi-Sen(MMS)程序给出的理性共形场理论的分类方案,以两个数字来确定一个理性的共形场理论:$(n,l)$。 $ n $是理性保形场理论的字符数量。这些字符形成了模块化线性微分方程的线性独立解决方案(也由$(n,l)$标记); Wronskian指数$ L $是与Wronskian零结构相关的非负整数。 在本文中,我们计算了三类众所周知的CFT的$(n,l)$值。 WZW CFTS,Virasoro最小模型和$ \ Mathcal {n} = 1 $ super-virasoro最小模型。对于后两者,我们获得了Wronskian指数的精确公式。对于WZW CFT,我们获得了小等级(最多2),所有级别以及所有等级和小级别(最多2)的精确公式,其余的我们使用计算机程序来计算。我们发现,1级的任何WZW CFT都具有消失的Wronskian索引,就像$ \ Mathbf {\ hat {a} _1} $ CFT在所有级别上一样。我们找到了有趣的一致性,例如:(i)对于$ \ MathBf {\ hat {\ hat {a} _2} $和$ \ Mathbf {\ hat {g} {g} _2} $具有相同级别的$(n,l)$的$ hat _ $ \ mathbf { $ \ mathbf {\ hat {d} _r} $具有所有$ r \ geq 5 $的$(n,l)$值。 分类给定$(N,L)$的所有理性共形场理论是MMS计划的目标之一。我们可以使用计算来提供部分分类。对于著名的$(2,0)$案例,我们的部分分类被证明是完整的分类(三十年前由MMS实现)。对于$(3,0)$案例,我们的部分分类包括两个无限的CFT以及七个“离散” CFT;除其他两个都具有kac-moody对称性。

The classification scheme for rational conformal field theories, given by the Mathur-Mukhi-Sen (MMS) program, identifies a rational conformal field theory by two numbers: $(n, l)$. $n$ is the number of characters of the rational conformal field theory. The characters form linearly independent solutions to a modular linear differential equation (which is also labelled by $(n, l)$); the Wronskian index $l$ is a non-negative integer associated to the structure of zeroes of the Wronskian. In this paper, we compute the $(n, l)$ values for three classes of well-known CFTs viz. the WZW CFTs, the Virasoro minimal models and the $\mathcal{N} = 1$ super-Virasoro minimal models. For the latter two, we obtain exact formulae for the Wronskian indices. For WZW CFTs, we get exact formulae for small ranks (upto 2) and all levels and for all ranks and small levels (upto 2) and for the rest we compute using a computer program. We find that any WZW CFT at level 1 has a vanishing Wronskian index as does the $\mathbf{\hat{A}_1}$ CFT at all levels. We find intriguing coincidences such as: (i) for the same level CFTs with $\mathbf{\hat{A}_2}$ and $\mathbf{\hat{G}_2}$ have the same $(n,l)$ values, (ii) for the same level CFTs with $\mathbf{\hat{B}_r}$ and $\mathbf{\hat{D}_r}$ have the same $(n,l)$ values for all $r \geq 5$. Classifying all rational conformal field theories for a given $(n, l)$ is one of the aims of the MMS program. We can use our computations to provide partial classifications. For the famous $(2, 0)$ case, our partial classification turns out to be the full classification (achieved by MMS three decades ago). For the $(3, 0)$ case, our partial classification includes two infinite series of CFTs as well as seven ``discrete'' CFTs; except two all others have Kac-Moody symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源