论文标题
高几幅类型的kadomtsev-petviashvili tau功能的拓扑递归
Topological recursion for Kadomtsev-Petviashvili tau functions of hypergeometric type
论文作者
论文摘要
我们研究了与高几何类型(也称为Orlov-Scherbin分区函数)相对应的$ n $ - 点差异,并强调其$ \ hbar^2 $ po $ - 变形和扩展。在天然所需的分析假设下,我们证明了某些较高的循环方程,特别是包含标准线性和二次循环方程,因此暗示了斑点拓扑递归。我们还区分了确实满足自然分析假设的Orlov-Scherbin分区函数的两个大型家族,对于这些家族,我们还证明了所谓的投影特性,从而使Chekhov-Eynard-orderin-ordinin拓扑结构的完整声明。我们论点的一个特定特征是,它完全阐明了分区功能的Orlov-Scherbin参数的$ \ hbar^2 $ - 定义的作用,从各种较早获得的各种获得的方向都知道其必要性,但在拓扑递归的上下文中从未正确理解。作为本文结果的特殊情况,人们将拓扑递归的新的和统一的证据恢复到所有先前研究的与加权双Hurwitz数字有关的列举问题的案例。借助拓扑递归和Grothendieck-riemann-Roch公式,这反过来又提供了几乎所有ELSV型公式的新的证明。
We study the $n$-point differentials corresponding to Kadomtsev-Petviashvili tau functions of hypergeometric type (also known as Orlov-Scherbin partition functions), with an emphasis on their $\hbar^2$-deformations and expansions. Under the naturally required analytic assumptions, we prove certain higher loop equations that, in particular, contain the standard linear and quadratic loop equations, and thus imply the blobbed topological recursion. We also distinguish two large families of the Orlov-Scherbin partition functions that do satisfy the natural analytic assumptions, and for these families we prove in addition the so-called projection property and thus the full statement of the Chekhov-Eynard-Orantin topological recursion. A particular feature of our argument is that it clarifies completely the role of $\hbar^2$-deformations of the Orlov-Scherbin parameters for the partition functions, whose necessity was known from a variety of earlier obtained results in this direction but never properly understood in the context of topological recursion. As special cases of the results of this paper one recovers new and uniform proofs of the topological recursion to all previously studied cases of enumerative problems related to weighted double Hurwitz numbers. By virtue of topological recursion and the Grothendieck-Riemann-Roch formula this, in turn, gives new and uniform proofs of almost all ELSV-type formulas discussed in the literature.