论文标题
利用AI和智能反射表面进行6G物联网中的节能通信
Leveraging AI and Intelligent Reflecting Surface for Energy-Efficient Communication in 6G IoT
论文作者
论文摘要
越来越多的数据流量,各种延迟敏感的服务以及大量能源限制的物联网(IoT)设备为当前的通信网络带来了巨大的挑战,激励学术界和行业转向第六代(6G)网络。具有数据传输和处理的强大能力,6G被视为具有低潜伏期和能源成本的物联网通信的推动力。在本文中,我们提出了一个人工智能(AI)和6G IoT的智能反射表面(IRS)授权的能源效率通信系统。首先,我们设计了一个智能高效的通信体系结构,包括IRS辅助数据传输和AI驱动的网络资源管理机制。其次,制定了6G物联网系统的给定传输潜伏期下的能源效率最大化模型,该模型将共同优化所有通信参与者的设置,即IoT传输功率,IRS反射相移和BS检测矩阵。第三,提出了深入的加固学习(DRL)授权网络资源控制和分配方案来解决公式的优化模型。基于网络和渠道状态,支持DRL的方案设施的能源效率和低延迟通信。最后,实验结果验证了我们提出的6G IoT通信系统的有效性。
The ever-increasing data traffic, various delay-sensitive services, and the massive deployment of energy-limited Internet of Things (IoT) devices have brought huge challenges to the current communication networks, motivating academia and industry to move to the sixth-generation (6G) network. With the powerful capability of data transmission and processing, 6G is considered as an enabler for IoT communication with low latency and energy cost. In this paper, we propose an artificial intelligence (AI) and intelligent reflecting surface (IRS) empowered energy-efficiency communication system for 6G IoT. First, we design a smart and efficient communication architecture including the IRS-aided data transmission and the AI-driven network resource management mechanisms. Second, an energy efficiency-maximizing model under given transmission latency for 6G IoT system is formulated, which jointly optimizes the settings of all communication participants, i.e. IoT transmission power, IRS-reflection phase shift, and BS detection matrix. Third, a deep reinforcement learning (DRL) empowered network resource control and allocation scheme is proposed to solve the formulated optimization model. Based on the network and channel status, the DRL-enabled scheme facilities the energy-efficiency and low-latency communication. Finally, experimental results verified the effectiveness of our proposed communication system for 6G IoT.