论文标题

Ailearn:用于欺骗指纹检测的自适应增量学习模型

AILearn: An Adaptive Incremental Learning Model for Spoof Fingerprint Detection

论文作者

Agarwal, Shivang, Rattani, Ajita, Chowdary, C. Ravindranath

论文摘要

增量学习使学习者能够在不重新培训现有模型的情况下适应新知识。这是一项具有挑战性的任务,需要从新数据中学习,并保留从先前访问的数据中提取的知识。这一挑战称为稳定性困境。我们提出了AILEARN,这是一种用于增量学习的通用模型,它通过仔细整合了经过新数据的基本分类器的集合与当前合奏的基础分类器的集合,而无需使用整个数据从头开始重新划痕。我们证明了拟议的AILEARN模型对欺骗指纹检测应用的功效。与欺骗指纹检测有关的重大挑战之一是使用新制造材料生成的欺骗的性能下降。 AiLearn是一种自适应增量学习模型,可适应``Live''和``spoof''指纹图像的特征,并有效地识别了新数据时已知的新欺骗指纹以及已知的欺骗指纹。据我们所知,艾尔恩是第一次尝试适应数据属性以生成基本分类器的多种集成的数据。从2011年Livdet,Livdet 2013和Livdet 2015进行的标准高维数据集进行的实验中,我们表明,新的假材料的性能增长显着很高。平均而言,我们在连续学习阶段之间的准确性提高了49.57美元。

Incremental learning enables the learner to accommodate new knowledge without retraining the existing model. It is a challenging task which requires learning from new data as well as preserving the knowledge extracted from the previously accessed data. This challenge is known as the stability-plasticity dilemma. We propose AILearn, a generic model for incremental learning which overcomes the stability-plasticity dilemma by carefully integrating the ensemble of base classifiers trained on new data with the current ensemble without retraining the model from scratch using entire data. We demonstrate the efficacy of the proposed AILearn model on spoof fingerprint detection application. One of the significant challenges associated with spoof fingerprint detection is the performance drop on spoofs generated using new fabrication materials. AILearn is an adaptive incremental learning model which adapts to the features of the ``live'' and ``spoof'' fingerprint images and efficiently recognizes the new spoof fingerprints as well as the known spoof fingerprints when the new data is available. To the best of our knowledge, AILearn is the first attempt in incremental learning algorithms that adapts to the properties of data for generating a diverse ensemble of base classifiers. From the experiments conducted on standard high-dimensional datasets LivDet 2011, LivDet 2013 and LivDet 2015, we show that the performance gain on new fake materials is significantly high. On an average, we achieve $49.57\%$ improvement in accuracy between the consecutive learning phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源