论文标题
控制硅量子点中的合成自旋轨道耦合与磁场
Controlling Synthetic Spin-Orbit Coupling in a Silicon Quantum Dot with Magnetic Field
论文作者
论文摘要
可调合成的自旋轨道耦合(S-SOC)是各种量子系统中的主要挑战之一,例如超速原子气体,拓扑超导体和半导体量子点。在这里,我们通过研究硅量子点中自旋 - 瓦利共振的各向异性来证明控制S-SOC。当我们旋转施加的磁场内部内置的磁场时,我们发现了共振幅度的引人注目的非曲线行为,该行为将S-SOC与固有的自旋轨耦合(I-SOC)区分开,并将这种行为与先前忽略的平面内部横向磁场梯度相关联。此外,通过理论上分析实验测量的S-SOC场,我们可以预测,如果将平面内磁场的方向从传统的工作点旋转,则可以优化自旋量子量置量的质量因子。
Tunable synthetic spin-orbit coupling (s-SOC) is one of the key challenges in various quantum systems, such as ultracold atomic gases, topological superconductors, and semiconductor quantum dots. Here we experimentally demonstrate controlling the s-SOC by investigating the anisotropy of spin-valley resonance in a silicon quantum dot. As we rotate the applied magnetic field in-plane, we find a striking nonsinusoidal behavior of resonance amplitude that distinguishes s-SOC from the intrinsic spin-orbit coupling (i-SOC), and associate this behavior with the previously overlooked in-plane transverse magnetic field gradient. Moreover, by theoretically analyzing the experimentally measured s-SOC field, we predict the quality factor of the spin qubit could be optimized if the orientation of the in-plane magnetic field is rotated away from the traditional working point.