论文标题

Deepks-kit:用于开发基于机器学习的化学精确能量和密度功能模型的软件包

DeePKS-kit: a package for developing machine learning-based chemically accurate energy and density functional models

论文作者

Chen, Yixiao, Zhang, Linfeng, Wang, Han, E, Weinan

论文摘要

我们介绍了Deepk-Kit,这是一种开源软件包,用于开发基于机器学习的能量和密度功能模型。 Deepks-kit与开源机器学习库Pytorch和PYTORCH相连,PYSCF是一项从头开始的计算化学计划,该计划提供了简单而定制的工具,用于开发量子化学代码。它支持DEEPHF和DEEPKS方法。除了解释方法和软件中的细节外,我们还提供了一个为水簇开发化学精确模型的示例。

We introduce DeePKS-kit, an open-source software package for developing machine learning based energy and density functional models. DeePKS-kit is interfaced with PyTorch, an open-source machine learning library, and PySCF, an ab initio computational chemistry program that provides simple and customized tools for developing quantum chemistry codes. It supports the DeePHF and DeePKS methods. In addition to explaining the details in the methodology and the software, we also provide an example of developing a chemically accurate model for water clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源