论文标题
UNINK定理用于对称准凸多项式
Unlinking Theorem for Symmetric Quasi-convex Polynomials
论文作者
论文摘要
让$μ_n$成为$ \ mathbb {r}^n $和$ x $的标准高斯度量,是$ \ mathbb {r}^n $的随机向量,与法律$μ_n$。 u-onjoxture指出,如果$ f $和$ g $是$ \ mathbb {r}^n $上的两个多项式,以至于$ f(x)$和$ g(x)$是独立的,那么存在正交转换$ l $ on $ on $ on $ \ mathbb {r} n $ and $ k $ $(x_1,\ cdots,x_k)$和$ g \ circ l $是$(x_ {k+1},\ cdots,x_n)$的函数。在这种情况下,据说$ f $和$ g $是未链接的。在本说明中,我们证明,如果$ f(x)$和$ g(x)$是独立的,则将两个对称,准convex $ f $ $ f $和$ g $取消链接。
Let $μ_n$ be the standard Gaussian measure on $\mathbb{R}^n$ and $X$ be a random vector on $\mathbb{R}^n$ with the law $μ_n$. U-conjecture states that if $f$ and $g$ are two polynomials on $\mathbb{R}^n$ such that $f(X)$ and $g(X)$ are independent, then there exist an orthogonal transformation $L$ on $\mathbb{R}^n$ and an integer $k$ such that $f\circ L$ is a function of $(x_1,\cdots,x_k)$ and $g\circ L$ is a function of $(x_{k+1},\cdots,x_n)$. In this case, $f$ and $g$ are said to be unlinked. In this note, we prove that two symmetric, quasi-convex polynomials $f$ and $g$ are unlinked if $f(X)$ and $g(X)$ are independent.