论文标题

$ f(r,t)$重力理论中的圆柱对称自我赋入动力学系统的复杂性分析

Complexity analysis of Cylindrically Symmetric Self-gravitating Dynamical System in $f(R,T)$ Theory of Gravity

论文作者

Zubair, M., Azmat, Hina

论文摘要

在本文中,我们通过复杂性因子研究了一个圆柱体对称的自我散发动力学对象,该对象是通过在$ f(r,t)$重力理论中的reimann tensor的正交分裂获得的。我们的研究基于Herrera \ cite {12b}提出的动态源的复杂性的定义。实际上,我们想分析修饰理论中圆柱体对称动力学源的复杂性因子的行为。为此,我们通过在$ f(r,t)$重力中对reimann张量的正交分割来定义标量函数,并为圆柱形几何形状锻炼结构标量。我们评估了结构的复杂性,并分析了所考虑的系统进化模式的复杂性。为了呈现最简单的进化方式,我们探索了$ f(r,t)$重力中的同源条件和同质扩展条件,并在通用可行的非限制$ f(r,t)=α_1r^m t^n +α_2t(1 +α__3t t(1 +α__3T^p r)的背景下讨论了动力学和动力学。为了进行全面的分析,我们考虑了所考虑的模型的三种不同的情况(代表最小和非最小值耦合),发现即使在最简单的进化模式下,系统的复杂性也会增加。但是,高阶痕量术语会影响系统的复杂性,但对于最小耦合而言,它们对于最简单的进化方式至关重要。还讨论了消失的复杂性因子的稳定性。

In this article, we have studied a cylindrically symmetric self-gravitating dynamical object via complexity factor which is obtained through orthogonal splitting of Reimann tensor in $f(R,T)$ theory of gravity. Our study is based on the definition of complexity for dynamical sources, proposed by Herrera \cite{12b}. We actually want to analyze the behavior of complexity factor for cylindrically symmetric dynamical source in modified theory. For this, we define the scalar functions through orthogonal splitting of Reimann tensor in $f(R,T)$ gravity and work out structure scalars for cylindrical geometry. We evaluated the complexity of the structure and also analyzed the complexity of the evolutionary patterns of the system under consideration. In order to present simplest mode of evolution, we explored homologous condition and homogeneous expansion condition in $f(R,T)$ gravity and discussed dynamics and kinematics in the background of a generic viable non-minimally coupled $f(R,T)=α_1 R^m T^n +α_2 T(1+α_3 T^p R^q)$ model. In order to make a comprehensive analysis, we considered three different cases (representing both minimal and non-minimal coupling) of the model under consideration and found that complexity of a system is increased in the presence of higher order curvature terms, even in the simplest modes of evolution. However, higher order trace terms affects the complexity of the system but they are not crucial for simplest modes of evolution in the case of minimal coupling. The stability of vanishing of complexity factor has also been discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源