论文标题
在高密度H-$^{11} $ b等离子的融合链反应上
On a fusion chain reaction via suprathermal ions in high-density H-$^{11}$B plasma
论文作者
论文摘要
$^{11} $ b $(p,α)2α$融合反应对于能源生产目的特别有吸引力,因为其动脉特征和反应物和产品之间没有放射性物种。然而,由于$^{11} $ b燃料在高达100 keV的$^{11} $ b燃料的反应性较低,因此其在热核方案中的剥削似乎令人难以置信。已经提出,通过α颗粒和燃料离子之间的弹性碰撞(以这种方式散布到超颗粒能量)的融合链被认为是克服这一限制的可能途径。基于一个简单的模型,这项工作调查了无限的,无分化的$^{11} $ b血浆,在广泛的密度和温度下,这是激光驱动的实验感兴趣的($ 10^{$ 10^{24} \ Lessim N_e \ sim n_e \ sillsim n_e \ silysim 10^$ 10^$ c {28} $ cmmcm, \ Lessim 100 $ kev,$ t_i \ sim $ 1 kev)。特别是,已经使用了$α$ - $ p $散射的横截面数据,其中包括核交互。乘以$ k_ \ infty $随着电子温度的显着增加,而随着等离子密度的显着增加。但是,即使考虑到最高温度和密度,尽管核散射包括$ k_ \ infty $,但$ 10^{ - 2} $的订单也增加了两倍以上。通常,在限制方案中需要$ k_ \ infty $非常接近1的值,以增强超耐核核能收益率高达$ 10^3 $ - $ 10^4 $。
The $^{11}$B$(p,α)2α$ fusion reaction is particularly attractive for energy production purposes because of its aneutronic character and the absence of radioactive species among reactants and products. Its exploitation in the thermonuclear regime, however, appears to be prohibitive due to the low reactivity of the $^{11}$B fuel at temperatures up to 100 keV. A fusion chain sustained by elastic collisions between the alpha particles and fuel ions, this way scattered to suprathermal energies, has been proposed as a possible route to overcome this limitation. Based on a simple model, this work investigates the reproduction process in an infinite, non-degenerate $^{11}$B plasma, in a wide range of densities and temperatures which are of interest for laser-driven experiments ($10^{24} \lesssim n_e \lesssim 10^{28} {\rm cm}^{-3}$, $T_e \lesssim 100$ keV, $T_i \sim$ 1 keV). In particular, cross section data for the $α$-$p$ scattering which include the nuclear interaction have been used. The multiplication factor, $k_\infty$, increases markedly with electron temperature and less significantly with plasma density. However, even at the highest temperature and density considered, and despite a more than twofold increase by the inclusion of the nuclear scattering, $k_\infty$ turns out to be of the order of $10^{-2}$ only. In general, values of $k_\infty$ very close to 1 are needed in a confined scheme to enhance the suprathermal-to-thermonuclear energy yield by factors of up to $10^3$-$10^4$.