论文标题

关于groupoids和$ c^*$ - 自相似动作的代数

On groupoids and $C^*$-algebras from self-similar actions

论文作者

Deaconu, Valentin

论文摘要

给定有限图的路径空间上的自相似的groupoid动作$(g,e)$,我们研究了相关的exel-pardoétalegroupoid $ {\ mathcal g}(g,e)$及其$ c^*$ - algebra $ c^*(g,e)$。我们回顾了一些有关类动作,偏斜产品和半导体产品的事实,并概括了雷诺关于类似于takai二元性的群体相似性的结果。我们还描述了计算$ c^*(g,e)$的$ k $ - 理论的一般策略,以及在某些情况下的$ {\ Mathcal g}(g,e)$的同源性,并用示例说明。

Given a self-similar groupoid action $(G,E)$ on the path space of a finite graph, we study the associated Exel-Pardo étale groupoid ${\mathcal G}(G,E)$ and its $C^*$-algebra $C^*(G,E)$. We review some facts about groupoid actions, skew products and semi-direct products and generalize a result of Renault about similarity of groupoids which resembles Takai duality. We also describe a general strategy to compute the $K$-theory of $C^*(G,E)$ and the homology of ${\mathcal G}(G,E)$ in certain cases and illustrate with an example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源