论文标题
Schroedinger动力学的散射波运算符的L^P有界性,该动力学具有时间相关电位和应用
L^p Boundedness of the Scattering Wave Operators of Schroedinger Dynamics with Time-dependent Potentials and applications
论文作者
论文摘要
本文在$ \ mathbb {r}^3 $中建立了Wave Operator的$ l^p $界限,并具有时间相关的电位。证明的方法基于新的取消引理。作为基于此方法的典型应用,与Strichartz估计的结合是非线性分散方程的存在和散射。例如,我们在$ l^{\ infty} $中证明了全球存在和统一的界限,对于$ l^2中的Hartreenonlinearschrödinger方程(\ Mathbb {r}^3),$允许solitons的存在。我们还证明了$ p> p_c(n)$中的$ l^p(\ mathbb {r}^n)$中的自由通道波运算符,带有$ p_c(3)= 6 $。
This paper establishes the $L^p$ boundedness of wave operators for linear Schrödinger equations in $\mathbb{R}^3$ with time-dependent potentials. The approach to the proof is based on new cancellation lemmas. As a typical application based on this method, combined with Strichartz estimates is the existence and scattering for nonlinear dispersive equations. For example, we prove global existence and uniform boundedness in $L^{\infty}$, for a class of Hartree nonlinear Schrödinger equations in $L^2(\mathbb{R}^3),$ allowing the presence of solitons. We also prove the existence of free channel wave operators in $L^p(\mathbb{R}^n)$ for $p>p_c(n)$, with $p_c(3)=6$.