论文标题
拓扑整合的派生和对仿射式式插图的加法组动作
Topologically integrable derivations and additive group actions on affine ind-schemes
论文作者
论文摘要
元素兴趣是代数品种的无限维度概括,它们在许多不同的情况下自然而然,尤其是在研究仿射空间的自然形态群体中。在本文中,我们介绍并开发了完整拓扑环的拓扑整合推导的基本代数理论。我们建立了对仿期属性的添加群的作用与其坐标性的拓扑结合派生之间的动作之间的双向代数几何对应关系,从而扩展了对仿射品种的加法组作用与局部nilpotent nilpotent的坐标衍生物之间的经典富有成果的对应关系。
Affine ind-varieties are infinite dimensional generalizations of algebraic varieties which appear naturally in many different contexts, in particular in the study of automorphism groups of affine spaces. In this article we introduce and develop the basic algebraic theory of topologically integrable derivations of complete topological rings. We establish a bijective algebro-geometric correspondence between additive group actions on affine ind-varieties and topologically integrable derivations of their coordinate pro-rings which extends the classical fruitful correspondence between additive group actions on affine varieties and locally nilpotent derivations of their coordinate rings.