论文标题
通过修改的DUKHIN编号1:1电解质的均匀电荷纳米孔的选择性缩放
Scaling of selectivity in uniformly charged nanopores through a modified Dukhin number for 1:1 electrolytes
论文作者
论文摘要
我们表明,DUKHIN编号的修改版本是均匀带电的纳米孔离子选择性的适当缩放参数。修改后的dukhin号码是变量$σ$(表面充电),$ r $(毛孔半径)和$ c $(盐浓度)的明确函数,定义为$ \ mathrm {mdu} = |/e(r/λ)$ sim $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c。 c^{ - 1/2} $)。缩放意味着设备函数(选择性)是MDU的平滑且(在这种情况下)单调函数。引入了原始的DUKHIN编号定义为$ \ Mathrm {du} = |σ|/erc $($ c^{ - 1} $依赖性),以指示表面还是体积传导在孔中是否占主导地位。修改后的版本满足缩放率并表征了中间状态中的选择性,其中存在表面和散装电导,并且孔既不是完美的选择性,也不是完全非选择性的。我们使用局部平衡蒙特卡洛法和泊松 - 尼斯特·普朗克理论的建模研究提供了可以从中计算径向选择性曲线的径向通量曲线。这些轮廓显示了纳米孔的哪个区域或体积传导在变量$σ$,$ r $和$ c $的给定组合中占主导地位。我们表明,缩放曲线的拐点可用于表征表面和体积电导之间的过渡点。
We show that a modified version of the Dukhin number is an appropriate scaling parameter for the ionic selectivity of uniformly charged nanopores. The modified Dukhin number is an unambiguous function of the variables $σ$ (surface charge), $R$ (pore radius), and $c$ (salt concentration), and defined as $\mathrm{mDu}=|σ|/e(R/λ)$, where $λ$ is the screening length of the electrolyte carrying the $c$ dependence ($λ\sim c^{-1/2}$). Scaling means that the device function (selectivity) is a smooth and (in this case) monotonic function of mDu. The original Dukhin number defined as $\mathrm{Du}=|σ|/eRc$ ($c^{-1}$ dependence) was introduced to indicate whether the surface or the volume conduction is dominant in the pore. The modified version satisfies scaling and characterizes selectivity in the intermediate regime, where both surface and bulk conductions are present and the pore is neither perfectly selective, nor perfectly non-selective. Our modeling study using the Local Equilibrium Monte Carlo method and the Poisson-Nernst-Planck theory provides the radial flux profiles from which the radial selectivity profile can be computed. These profiles show in which region of the nanopore the surface or the volume conduction dominates for a given combination of the variables $σ$, $R$, and $c$. We show that the inflection point of the scaling curve may be used to characterize the transition point between the surface and volume conductions.