论文标题

通过英语枢轴:可靠地回答多语言问题而没有文件检索

Pivot Through English: Reliably Answering Multilingual Questions without Document Retrieval

论文作者

Montero, Ivan, Longpre, Shayne, Lao, Ni, Frank, Andrew J., DuBois, Christopher

论文摘要

较低资源语言(LRL)回答开放式回答问题的现有方法显着落后于英语。他们不仅遭受了非英语文档检索的缺点,而且还依赖于特定语言的任务或翻译监督。我们为可用资源更现实的任务设置制定,该设置将文档检索绕过可靠地将知识从英语转移到较低的资源语言。假设英语答案模型或数据库有很强的问题,我们比较和分析通过英语旋转的方法:将外国查询映射到英语,然后英语答案回到目标语言答案。在此任务设置中,我们提出了重新播放的多语言最大内部产品搜索(RM-MIPS),类似于用Reranking的英语训练集的语义相似性检索,这在XQUAD上的大质量优于2.7%,在MKQA上优于6.2%。分析证明了该策略在具有挑战性的环境中对最先进的替代方案的特殊功效:低资源语言,具有广泛的干扰数据和查询分布不对对准。避免检索,我们的分析表明,这种方法为几乎任何语言的现成语言提供了快速的答案,而无需使用目标语言的任何其他培训数据。

Existing methods for open-retrieval question answering in lower resource languages (LRLs) lag significantly behind English. They not only suffer from the shortcomings of non-English document retrieval, but are reliant on language-specific supervision for either the task or translation. We formulate a task setup more realistic to available resources, that circumvents document retrieval to reliably transfer knowledge from English to lower resource languages. Assuming a strong English question answering model or database, we compare and analyze methods that pivot through English: to map foreign queries to English and then English answers back to target language answers. Within this task setup we propose Reranked Multilingual Maximal Inner Product Search (RM-MIPS), akin to semantic similarity retrieval over the English training set with reranking, which outperforms the strongest baselines by 2.7% on XQuAD and 6.2% on MKQA. Analysis demonstrates the particular efficacy of this strategy over state-of-the-art alternatives in challenging settings: low-resource languages, with extensive distractor data and query distribution misalignment. Circumventing retrieval, our analysis shows this approach offers rapid answer generation to almost any language off-the-shelf, without the need for any additional training data in the target language.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源