论文标题

旨在了解非线性动态系统中的传感器和控制节点的选择:Lyapunov理论符合分支机构和结合

Towards Understanding Sensor and Control Nodes Selection in Nonlinear Dynamic Systems: Lyapunov Theory Meets Branch-and-Bound

论文作者

Nugroho, Sebastian A., Taha, Ahmad F.

论文摘要

传感器和执行器选择问题(SASP)是动态系统设计和控制中的一些核心问题。这些问题对应于确定传感器(测量)或执行器(控制节点)的最佳选择,以便可以实现某些估计/控制目标。尽管有关SASP的文献确实是侵入性的,但绝大多数工作都集中在网络动力学的线性(IZED)表示上,从而导致对密闭操作区域有效的传感器或执行器(SA)的放置。作为替代方案,我们提出了一个新的通用框架,以解决非线性动态系统(NDS)中的SASP,假设输入和输出与非线性动力学线性耦合。通过(i)将NDS分类和参数分类为各种非线性函数集,(ii)利用丰富的Lyapunov理论公式,以及(iii)设计一种利用SASP问题结构的新的定制分支结合(BNB)算法。新设计的BNB例程在计算上比标准的例程更具吸引力,也直接适用于为线性系统解决SASP。与文献中的当代方法相反,我们的方法适合于找到稳定/不稳定的ND的最佳SA组合,可通过简单的线性反馈控制策略确保估计误差和闭环动力学的稳定。

Sensor and actuator selection problems (SASP) are some of the core problems in dynamic systems design and control. These problems correspond to determining the optimal selection of sensors (measurements) or actuators (control nodes) such that certain estimation/control objectives can be achieved. While the literature on SASP is indeed inveterate, the vast majority of the work focuses on linear(ized) representation of the network dynamics, resulting in the placements of sensors or actuators (SA) that are valid for confined operating regions. As an alternative, herein we propose a new general framework for addressing SASP in nonlinear dynamic systems (NDS), assuming that the inputs and outputs are linearly coupled with the nonlinear dynamics. This is investigated through (i) classifying and parameterizing the NDS into various nonlinear function sets, (ii) utilizing rich Lyapunov theoretic formulations, and (iii) designing a new customized branch-and-bound (BnB) algorithm that exploits problem structure of the SASP. The newly designed BnB routines are computationally more attractive than the standard one and also directly applicable to solve SASP for linear systems. In contrast with contemporary approaches from the literature, our approach is suitable for finding the optimal SA combination for stable/unstable NDS that ensures stabilization of estimation error and closed-loop dynamics through a simple linear feedback control policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源