论文标题
$ w-m $幻影过渡$ z_t <0.1 $作为哈勃张力的分辨率
A $w-M$ phantom transition at $z_t<0.1$ as a resolution of the Hubble tension
论文作者
论文摘要
在过渡红移$ z_t <0.1 $ $ w(z)= -1+Δw\;θ(z_t-z)$中,带有$ΔW<0 $的$ w(z)= -1+ΔW\;θ(z_t-z)$的状态参数$ w $的快速幻影过渡<0.1 $ r(z)= \ int_0^z \ frac {dz'} {h(z')} $ for $ z> z_t $。然而,这种过渡将意味着SNIA绝对幅度$ m $的值明显低于本地头孢海校准器$ z <0.01 $施加的$ m_c $的值$ m_c $。因此,为了解决$ h_0 $张力,它需要伴随SNIA绝对幅度$ m $的价值类似的过渡,为$ m(z)= m_c+δm\;θ(z-z_t)$,$δm<0 $。这是$ W-M $幻影过渡($ LWMPT $)。可以通过突然减少有效的牛顿常数$μ= g _ = g _ = g _ {\ rm {eff}}/g _ {\ rm {n}} $的价值来实现,这可以实现。我们证明,与$ h(z)$的光滑迟到时间变形相比,$ w-m $的超低$ z $突然功能可更好地适合宇宙学数据,这也解决了哈勃张力。对于$ z_t = 0.02 $,我们找到$ΔW\ simeq -4 $,$ΔM\ simeq -0.1 $。该模型还解决了$ z> z_t $的$μ$ $ $ $ $ $ $的增长张力。 $ΔW= 0 $(否$ W $过渡)仍然可以解决$ h_0 $张力,并具有较大的振幅$ m $ m $转换,$Δm\ simeq -0.2 $ at $ z_t \ simeq 0.01 $。这意味着$ z> 0.01 $(约$ 12 \%$)的$μ$更大的减少。 $ lwmpt $通常是由标量场非最小耦合到重力而无需筛选机制的标量场引起的,因为在此型号中,$μ= 1 $ = 1 $ in $ z <0.01 $。
A rapid phantom transition of the dark energy equation of state parameter $w$ at a transition redshift $z_t<0.1$ of the form $w(z)=-1+Δw\;Θ(z_t-z)$ with $Δw<0$ can lead to a higher value of the Hubble constant while closely mimicking a Planck18/$Λ$CDM form of the comoving distance $r(z)=\int_0^z\frac{dz'}{H(z')}$ for $z>z_t$. Such a transition however would imply a significantly lower value of the SnIa absolute magnitude $M$ than the value $M_C$ imposed by local Cepheid calibrators at $z<0.01$. Thus, in order to resolve the $H_0$ tension it would need to be accompanied by a similar transition in the value of the SnIa absolute magnitude $M$ as $M(z)=M_C+ΔM \;Θ(z-z_t)$ with $ΔM<0$. This is a Late $w-M$ phantom transition ($LwMPT$). It may be achieved by a sudden reduction of the value of the normalized effective Newton constant $μ=G_{\rm{eff}}/G_{\rm{N}}$ by about $6\%$ assuming that the absolute luminosity of SnIa is proportional to the Chandrasekhar mass which varies as $μ^{-3/2}$. We demonstrate that such an ultra low $z$ abrupt feature of $w-M$ provides a better fit to cosmological data compared to smooth late time deformations of $H(z)$ that also address the Hubble tension. For $z_t=0.02$ we find $Δw\simeq -4$, $ΔM \simeq -0.1$. This model also addresses the growth tension due to the predicted lower value of $μ$ at $z>z_t$. A prior of $Δw=0$ (no $w$ transition) can still resolve the $H_0$ tension with a larger amplitude $M$ transition with $ΔM\simeq -0.2$ at $z_t\simeq 0.01$. This implies a larger reduction of $μ$ for $z>0.01$ (about $12\%$). The $LwMPT$ can be generically induced by a scalar field non-minimally coupled to gravity with no need of a screening mechanism since in this model $μ=1$ at $z<0.01$.