论文标题

层分解学习基于高斯卷积模型和残余脱毛的学习

Layer Decomposition Learning Based on Gaussian Convolution Model and Residual Deblurring for Inverse Halftoning

论文作者

Son, Chang-Hwan

论文摘要

层分解以将输入图像分为基础,细节层已稳定地用于图像恢复。现有基于添加剂模型的剩余网络需要具有较小输出范围的残留层,以快速收敛和视觉质量改进。然而,在反抗抗物的反向中,同质点模式阻碍了剩余层的较小输出范围。因此,提出了基于高斯卷积模型(GCM)和结构吸引的脱毛策略的新层分解网络,以实现基础和细节层的残留学习。对于基础层,提出了新的基于GCM的剩余子网。 GCM利用了统计分布,其中使用高斯滤波器模糊的连续音图像和模糊的半身像图像之间的图像差可能会导致狭窄的输出范围。随后,基于GCM的剩余子网络使用高斯过滤的Halfton图像作为输入,并输出图像差为残差,从而产生了基础层,即高斯 - 蓝毛连续音图像。对于细节层,提出了一种新的结构感知的残留脱毛子网(SARD)。为了删除基本层的高斯模糊,撒母将预测的基础层用作输入,并输出deblurred版本。为了更有效地恢复图像结构,例如线条和文本,将新的图像结构图预测变量纳入了脱毛网络,以诱导结构自适应学习。本文提供了一种基于GCM和SARD的基础和细节层的剩余学习方法。此外,已验证的是,所提出的方法超过了基于U-NET,直接脱张网络和逐渐残留网络的最新方法。

Layer decomposition to separate an input image into base and detail layers has been steadily used for image restoration. Existing residual networks based on an additive model require residual layers with a small output range for fast convergence and visual quality improvement. However, in inverse halftoning, homogenous dot patterns hinder a small output range from the residual layers. Therefore, a new layer decomposition network based on the Gaussian convolution model (GCM) and structure-aware deblurring strategy is presented to achieve residual learning for both the base and detail layers. For the base layer, a new GCM-based residual subnetwork is presented. The GCM utilizes a statistical distribution, in which the image difference between a blurred continuous-tone image and a blurred halftoned image with a Gaussian filter can result in a narrow output range. Subsequently, the GCM-based residual subnetwork uses a Gaussian-filtered halftoned image as input and outputs the image difference as residual, thereby generating the base layer, i.e., the Gaussian-blurred continuous-tone image. For the detail layer, a new structure-aware residual deblurring subnetwork (SARDS) is presented. To remove the Gaussian blurring of the base layer, the SARDS uses the predicted base layer as input and outputs the deblurred version. To more effectively restore image structures such as lines and texts, a new image structure map predictor is incorporated into the deblurring network to induce structure-adaptive learning. This paper provides a method to realize the residual learning of both the base and detail layers based on the GCM and SARDS. In addition, it is verified that the proposed method surpasses state-of-the-art methods based on U-Net, direct deblurring networks, and progressively residual networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源