论文标题

在雾计算体系结构下使用当地差分隐私的安全热路径众包

Secure Hot Path Crowdsourcing with Local Differential Privacy under Fog Computing Architecture

论文作者

Yang, Mengmeng, Tjuawinata, Ivan, Lam, Kwok Yan, Zhao, Jun, Sun, Lin

论文摘要

众包在数据收集的物联网(IoT)中起着至关重要的作用,其中一组工人配备了与Internet连接的地理设备,以收集传感器数据以进行营销或研究目的。在本文中,我们考虑众包这些工人的热门旅行道路。每个工人都必须报告他的实时位置信息,该信息敏感并且必须受到保护。基于加密的方法是保护位置的最直接方法,但不适用于资源有限的设备。此外,当地的差异隐私是一个强大的隐私概念,并且已在许多软件系统中部署。但是,当地的差异隐私技术需要大量参与者来确保估计的准确性,众包并非总是如此。为了解决这个问题,我们提出了一种基于TRIE的迭代统计方法,该方法结合了添加剂秘密共享和当地差异隐私技术。该方法的性能也出色,即使参与者数量有限,不需要复杂的计算。具体而言,提出的方法包含三个主要组成部分:迭代统计,自适应抽样和安全报告。我们从理论上分析了提出的方法的有效性,并执行广泛的实验,以表明所提出的方法不仅提供了严格的隐私保证,而且还显着提高了以前现有解决方案的性能。

Crowdsourcing plays an essential role in the Internet of Things (IoT) for data collection, where a group of workers is equipped with Internet-connected geolocated devices to collect sensor data for marketing or research purpose. In this paper, we consider crowdsourcing these worker's hot travel path. Each worker is required to report his real-time location information, which is sensitive and has to be protected. Encryption-based methods are the most direct way to protect the location, but not suitable for resource-limited devices. Besides, local differential privacy is a strong privacy concept and has been deployed in many software systems. However, the local differential privacy technology needs a large number of participants to ensure the accuracy of the estimation, which is not always the case for crowdsourcing. To solve this problem, we proposed a trie-based iterative statistic method, which combines additive secret sharing and local differential privacy technologies. The proposed method has excellent performance even with a limited number of participants without the need of complex computation. Specifically, the proposed method contains three main components: iterative statistics, adaptive sampling, and secure reporting. We theoretically analyze the effectiveness of the proposed method and perform extensive experiments to show that the proposed method not only provides a strict privacy guarantee, but also significantly improves the performance from the previous existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源