论文标题

双随机成对相互作用,以达成一致和对齐方式

Doubly Stochastic Pairwise Interactions for Agreement and Alignment

论文作者

Dagès, Thomas, Bruckstein, Alfred M.

论文摘要

随机的成对遇到通常发生在大量人群或移动药物组中,以及在相遇中发生的各种类型的局部互动占了新兴的全球现象。特别是,在群体机器人技术,社会生物学和社会动态的领域中,提出了几种类型的本地成对相互作用,并分析了在机器人群体,动物群或人类社会中协调运动团队中的空间收集或聚集和共识。我们在这里提出了一种非常简单的随机相互作用,可以在简单代理的群中导致一致或几何对齐,并分析融合到共识的过程。考虑一组通过成对相互作用在时间上演变的代理:代理的状态是实际值(一个间隔内的随机初始化位置),或者是不受约束的矢量(例如,代理在平面中的位置)或受约束以具有单位长度(例如,代理运动的方向)。相互作用是双重随机的,从某种意义上说,在离散的时间步骤中,对代理成对是随机选择的,并且它们的新状态是独立且均匀地设置在(局部)域或相互作用对定义的间隔中的随机设置。我们表明,在有限的预期时间(通过发生的相互作用数量来衡量的情况下)在不受约束的状态和何时是单位向量时对齐的一致性。

Random pairwise encounters often occur in large populations, or groups of mobile agents, and various types of local interactions that happen at encounters account for emergent global phenomena. In particular, in the fields of swarm robotics, sociobiology, and social dynamics, several types of local pairwise interactions were proposed and analysed leading to spatial gathering or clustering and agreement in teams of robotic agents coordinated motion, in animal herds, or in human societies. We here propose a very simple stochastic interaction at encounters that leads to agreement or geometric alignment in swarms of simple agents, and analyse the process of converging to consensus. Consider a group of agents whose "states" evolve in time by pairwise interactions: the state of an agent is either a real value (a randomly initialised position within an interval) or a vector that is either unconstrained (e.g. the location of the agent in the plane) or constrained to have unit length (e.g. the direction of the agent's motion). The interactions are doubly stochastic, in the sense that, at discrete time steps, pairs of agents are randomly selected and their new states are independently and uniformly set at random in (local) domains or intervals defined by the states of the interacting pair. We show that such processes lead, in finite expected time (measured by the number of interactions that occurred) to agreement in case of unconstrained states and alignment when the states are unit vectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源