论文标题

电影对话中的细粒度情绪和意图学习

Fine-grained Emotion and Intent Learning in Movie Dialogues

论文作者

Welivita, Anuradha, Xie, Yubo, Pu, Pearl

论文摘要

我们提出了一个新颖的大规模情感对话数据集,该数据集由从OpenSubtitles语料库中检索的1M对话组成,并使用基于BERT的基于BERT的细粒度对话情感分类器进行注释。这项工作解释了用于预处理电影字幕的复杂管道,并选择良好的电影对话进行注释。我们还描述了半监督的学习过程,然后训练细粒度的情感分类器来注释这些对话。尽管有大量标签,但我们的对话情感分类器的准确度为65美元\%$,并用于注释OpenSubtitles的100万个情感电影对话。在数据集大小和细粒度的情绪和意图类别方面,这种情感对话分类的规模从未尝试过。用于分析所得数据集质量的可视化技术表明,它符合人类社会互动的模式。

We propose a novel large-scale emotional dialogue dataset, consisting of 1M dialogues retrieved from the OpenSubtitles corpus and annotated with 32 emotions and 9 empathetic response intents using a BERT-based fine-grained dialogue emotion classifier. This work explains the complex pipeline used to preprocess movie subtitles and select good movie dialogues to annotate. We also describe the semi-supervised learning process followed to train a fine-grained emotion classifier to annotate these dialogues. Despite the large set of labels, our dialogue emotion classifier achieved an accuracy of $65\%$ and was used to annotate 1M emotional movie dialogues from OpenSubtitles. This scale of emotional dialogue classification has never been attempted before, both in terms of dataset size and fine-grained emotion and intent categories. Visualization techniques used to analyze the quality of the resultant dataset suggest that it conforms to the patterns of human social interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源