论文标题

角度加速度的理论和数值分析是MTBI中脑应变的决定因素

Theoretical and numerical analysis for angular acceleration being determinant of brain strain in mTBI

论文作者

Liu, Yuzhe, Zhan, Xianghao, Domel, August G., Fanton, Michael, Zhou, Zhou, Raymond, Samuel J., Alizadeh, Hossein Vahid, Cecchi, Nicholas J., Zeineh, Michael, Grant, Gerald

论文摘要

由头部影响引起的轻度创伤性脑损伤(MTBI,也称为脑震荡)是一个至关重要的全球公共卫生问题,但MTBI的物理学仍不清楚。在撞击过程中,头部的快速运动会损害大脑,因此研究人员一直在努力研究与脑组织的损伤有关的头运动学参数(例如,线性加速度,角速度,角速度,角速度加速度)和脑部株之间的关系。尽管以前的研究表明,线性加速度对脑应变的贡献有限,但角速度还是角加速度导致脑部应变尚不清楚,因为它们的相互依赖性(加速度是速度时间衍生)。通过通过惯性力的镜头重塑问题,我们建议使用颅骨的参考框架而不是参考的地面框架来描述头部撞击过程中脑变形。基于大脑的刚体旋转,我们提出了一个理论框架,讲述了惯性力如何导致脑部劳累的机械分析。通过这种方式,我们从理论上表明角加速度决定了脑部应变,并通过使用有限元元素模型通过数值模拟来验证它。我们还提供了为什么基于峰值的先前研究发现相反的原因:角速度在某些情况下确定了脑应变。此外,我们使用相同的框架表明线性加速度会导致与角加速度不同机制的脑部劳累。但是,由于大脑对压缩和剪切的耐药性不同,与角度加速相比,线性加速度引起的脑部菌株很小。

Mild traumatic brain injury (mTBI, also known as concussion) caused by the head impact is a crucial global public health problem, but the physics of mTBI is still unclear. During the impact, the rapid movement of the head injures the brain, so researchers have been endeavoring to investigate the relationship between head kinematic parameters (e.g., linear acceleration, angular velocity, angular acceleration) and brain strain, which is associated with the injury of the brain tissue. Although previous studies have shown that linear acceleration had a limited contribution to brain strain, whether angular velocity or angular acceleration causes brain strain is still unclear because of their interdependency (acceleration being the velocity time-derivative). By reframing the problem through the lens of inertial forces, we propose to use the skull frame of reference instead of the ground frame of reference to describe brain deformation during head impact. Based on the rigid-body rotation of the brain, we present a theoretical framework of mechanical analysis about how the inertial forces cause brain strain. In this way, we theoretically show that angular acceleration determines brain strain, and we validate this by numerical simulations using a finite element head model. We also provide an explanation of why previous studies based on peak values found the opposite: that angular velocity determined brain strain in certain situations. Furthermore, we use the same framework to show that linear acceleration causes brain strain in a different mechanism from angular acceleration. However, because of the brain's different resistances to compressing and shearing, the brain strain caused by linear acceleration is small compared with angular acceleration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源