论文标题

基于GIS的停车场和道路的季节性太阳能潜力的估计

GIS-Based Estimation of Seasonal Solar Energy Potential for Parking Lots and Roads

论文作者

Nanda, Vishnu Mahesh Vivek, Tateosian, Laura, Baran, Perver

论文摘要

在道路和停车场上施放的阳光数量决定了太阳能车辆的充电机会,并影响了常规车辆的效率。在城市表面上的太阳能潜力估计以评估停车和驾驶条件,需要考虑到周围树木和建筑物所造成的阴影。但是,尽管现有的GIS工具可以计算具有建筑物和树木的表面上的太阳能电位,但这些工具并未估计树下的条件,也不考虑落叶树的季节性变化。我们介绍了一种新的方法,可以使用像素替代和光穿透因子来解决这些因素。在本文中,我们描述了如何将这些技术集成到一个工作流程中,以计算停车和驾驶条件的太阳潜在估计。我们演示了北卡罗来纳州城市环境中的方法,其中包括城市结构和树木的混合物。我们提供代码示例,以便易于重复此工作流程。使用我们的方法生产的太阳能图是规划太阳能车停车和路线的有用资源,并确定了传统车辆的阴影条件。

The amount of sun cast on roads and parking lots determines the charging opportunities for solar vehicles and impacts the efficiency of conventional vehicles. Estimates of solar energy potential on urban surfaces to assess parking and driving conditions need to account for the shadows cast by surrounding trees and buildings. However, though existing GIS tools can calculate solar potential on surfaces that have buildings and trees, these tools do not estimate the conditions beneath trees and do not consider the seasonal changes in deciduous trees. We introduce a new approach to address these factors using pixel substitution and a light penetration factor. In this paper, we describe how to integrate these techniques into a workflow for computing solar potential estimates for parking and driving conditions. We demonstrate the methodology in an urban setting in North Carolina that includes a mixture of urban structures and trees. We provide code samples so that this workflow is easily repeatable. The solar maps produced with our method are a useful resource for planning solar vehicle parking and routing, and identifying shaded conditions for conventional vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源