论文标题
缩放边界有限元法的错误估计值
Error estimates for the Scaled Boundary Finite Element Method
论文作者
论文摘要
缩放边界有限元法(SBFEM)是一种使用半分析方法构建近似空间的技术。它们基于通过多边形/多面体子区域对计算域的分区,其中形状的功能近似于局部dirichlet与分段多项式跟踪数据的问题。使用此操作员的适应方法,并通过对子区域施加类似星状的缩放要求,可以从径向和表面方向上局部SBFEM形状函数的表示,从ode系统的特征值和特征函数中获得,其系数由元素几何学确定,由元素几何和痕量多种元素确定。本文的目的是得出SBFEM谐波测试问题解决方案的先验错误估计。为此,SBFEM空间的特征是在达菲的近似情况下施加了梯度正交性约束。结果,缩放边界函数是达菲空间中任何功能在网格骨架上消失的任何功能的梯度正交,这是一个模拟于谐波函数的众所周知属性的模拟版本。将这种正交性属性应用于确切解决方案的已知有限元插值误差方面提供先验的SBFEM误差估计。还探索了与虚拟谐波近似值的相似性,以理解SBFEM收敛属性。使用2D和3D多面网格的数值实验证实了两个通过平滑溶液的测试问题的最佳SBFEM收敛速率。还通过使用接近奇异性和有限元近似值的SBFEM对点奇异解的近似值也引起了人们的注意,从而揭示了标准常规上下文的最佳精度。
The Scaled Boundary Finite Element Method (SBFEM) is a technique in which approximation spaces are constructed using a semi-analytical approach. They are based on partitions of the computational domain by polygonal/polyhedral subregions, where the shape functions approximate local Dirichlet problems with piecewise polynomial trace data. Using this operator adaptation approach, and by imposing a starlike scaling requirement on the subregions, the representation of local SBFEM shape functions in radial and surface directions are obtained from eigenvalues and eigenfunctions of an ODE system, whose coefficients are determined by the element geometry and the trace polynomial spaces. The aim of this paper is to derive a priori error estimates for SBFEM's solutions of harmonic test problems. For that, the SBFEM spaces are characterized in the context of Duffy's approximations for which a gradient-orthogonality constraint is imposed. As a consequence, the scaled boundary functions are gradient-orthogonal to any function in Duffy's spaces vanishing at the mesh skeleton, a mimetic version of a well-known property valid for harmonic functions. This orthogonality property is applied to provide a priori SBFEM error estimates in terms of known finite element interpolant errors of the exact solution. Similarities with virtual harmonic approximations are also explored for the understanding of SBFEM convergence properties. Numerical experiments with 2D and 3D polytopal meshes confirm optimal SBFEM convergence rates for two test problems with smooth solutions. Attention is also paid to the approximation of a point singular solution by using SBFEM close to the singularity and finite element approximations elsewhere, revealing optimal accuracy rates of standard regular contexts.