论文标题

临床MRI检查的1 mM各向同性MP-RAGE量的联合超分辨率和合成,并具有不同的方向,分辨率和对比度的扫描

Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast

论文作者

Iglesias, Juan Eugenio, Billot, Benjamin, Balbastre, Yael, Tabari, Azadeh, Conklin, John, Alexander, Daniel C., Golland, Polina, Edlow, Brian L., Fischl, Bruce

论文摘要

人脑MRI扫描的自动3D形态测定法的大多数现有算法都是针对大约1 mM分辨率的近乎异端体素的数据设计的,并且经常具有对比度约束 - 通常需要T1扫描(例如MP-Rage)。这种限制阻止了每年临床环境中使用较大的切片间间距(“厚切片”)获得的数百万MRI扫描的分析。无法定量分析这些扫描阻碍了医疗保健中定量神经影像学的采用,并且排除了可以达到巨大样本量的研究,从而极大地改善了我们对人脑的理解。 CNN的最新进展正在在MRI的超分辨率和对比度综合方面产生出色的结果。但是,这些方法对输入图像的对比度,分辨率和方向非常敏感,因此甚至在站点内也不会推广到各种临床采集方案。在这里,我们提出了合成器,一种训练CNN的方法,该CNN接收一个或多个具有不同对比度,分辨率和方向的厚切片扫描,并产生典型对比度的各向同性扫描(通常为1 mm MP-RAGE)。提出的方法不需要任何预处理,例如头骨剥离或偏置场校正。至关重要的是,Synthsr在3D分割产生的合成输入图像上进行培训,因此可以用于训练CNN,以实现任何对比度,分辨率和方向的组合,而无需高分辨率训练数据。我们在一系列常见的下游分析中测试了用合成器生成的图像,并表明它们可以可靠地用于皮层分割和体积测量,图像编码(例如,基于张量的形态计量学),如果满足了某些图像质量需求,甚至满足了皮质厚度的形态。源代码可在github.com/bbillot/synthsr上公开获得。

Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well - typically requiring T1 scans (e.g., MP-RAGE). This limitation prevents the analysis of millions of MRI scans acquired with large inter-slice spacing ("thick slice") in clinical settings every year. The inability to quantitatively analyze these scans hinders the adoption of quantitative neuroimaging in healthcare, and precludes research studies that could attain huge sample sizes and hence greatly improve our understanding of the human brain. Recent advances in CNNs are producing outstanding results in super-resolution and contrast synthesis of MRI. However, these approaches are very sensitive to the contrast, resolution and orientation of the input images, and thus do not generalize to diverse clinical acquisition protocols - even within sites. Here we present SynthSR, a method to train a CNN that receives one or more thick-slice scans with different contrast, resolution and orientation, and produces an isotropic scan of canonical contrast (typically a 1 mm MP-RAGE). The presented method does not require any preprocessing, e.g., skull stripping or bias field correction. Crucially, SynthSR trains on synthetic input images generated from 3D segmentations, and can thus be used to train CNNs for any combination of contrasts, resolutions and orientations without high-resolution training data. We test the images generated with SynthSR in an array of common downstream analyses, and show that they can be reliably used for subcortical segmentation and volumetry, image registration (e.g., for tensor-based morphometry), and, if some image quality requirements are met, even cortical thickness morphometry. The source code is publicly available at github.com/BBillot/SynthSR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源